Reoptimization in Branch-and-Bound Algorithms with an Application to Elevator Control

  • Benjamin Hiller
  • Torsten Klug
  • Jakob Witzig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7933)


We consider reoptimization (i.e., the solution of a problem based on information available from solving a similar problem) for branch-and-bound algorithms and propose a generic framework to construct a reoptimizing branch-and-bound algorithm. We apply this to an elevator scheduling algorithm solving similar subproblems to generate columns using branch-and-bound. Our results indicate that reoptimization techniques can substantially reduce the running times of the overall algorithm.


Search Tree Column Generation Master Problem Lagrangian Relaxation Feasible Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ausiello, G., Bonifaci, V., Escoffier, B.: Complexity and Approximation in Reoptimization. In: Computability in Context: Computation and Logic in the Real World. Imperial College Press/World Scientific (2011)Google Scholar
  2. 2.
    Desrochers, M., Soumis, F.: A reoptimization algorithm for the shortest path problem with time windows. European J. Oper. Res. 35, 242–254 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    DIP – Decomposition for Integer Programming,
  4. 4.
    Friese, P., Rambau, J.: Online-optimization of a multi-elevator transport system with reoptimization algorithms based on set-partitioning models. Discrete Appl. Math. 154(13), 1908–1931 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Galati, M.: Decomposition in Integer Linear Programming. PhD thesis, Lehigh University (2009)Google Scholar
  6. 6.
    Gamrath, G.: Generic branch-cut-and-price. Diploma thesis, TU Berlin (2010)Google Scholar
  7. 7.
    Gamrath, G., Lübbecke, M.E.: Experiments with a generic Dantzig-Wolfe decomposition for integer programs. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 239–252. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    GCG – Generic Column Generation,
  9. 9.
    Hiller, B.: Online Optimization: Probabilistic Analysis and Algorithm Engineering. PhD thesis, TU Berlin (2009)Google Scholar
  10. 10.
    Hiller, B., Klug, T., Tuchscherer, A.: An exact reoptimization algorithm for the scheduling of elevator groups. Flexible Services and Manufacturing Journal (to appear)Google Scholar
  11. 11.
    Krumke, S.O., Rambau, J., Torres, L.M.: Real-time dispatching of guided and unguided automobile service units with soft time windows. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 637–648. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Létocart, L., Nagih, A., Plateau, G.: Reoptimization in Lagrangian methods for the quadratic knapsack problem. Comput. Oper. Res. 39(1), 12–18 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Miller-Hooks, E., Yang, B.: Updating paths in time-varying networks with arc weight changes. Transportation Sci. 39(4), 451–464 (2005)CrossRefGoogle Scholar
  14. 14.
    Witzig, J.: Effiziente Reoptimierung in Branch&Bound-Verfahren für die Steuerung von Aufzügen. Bachelor thesis, TU Berlin (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Benjamin Hiller
    • 1
  • Torsten Klug
    • 1
  • Jakob Witzig
    • 1
  1. 1.Zuse Institute BerlinBerlinGermany

Personalised recommendations