Efficient Computation of Jogging Routes

  • Andreas Gemsa
  • Thomas Pajor
  • Dorothea Wagner
  • Tobias Zündorf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7933)


We study the problem of computing jogging (running) routes in pedestrian networks: Given source vertex s and length L , it asks for a cycle (containing s) that approximates L while considering niceness criteria such as the surrounding area, shape of the route, and its complexity. Unfortunately, computing such routes is NP-hard, even if the only optimization goal is length. We therefore propose two heuristic solutions: The first incrementally extends the route by joining adjacent faces of the network. The other builds on partial shortest paths and is even able to compute sensible alternative routes. Our experimental study indicates that on realistic inputs we can compute jogging routes of excellent quality fast enough for interactive applications.


Short Path Planar Graph Route Length Short Path Tree Source Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buchin, K., Knauer, C., Kriegel, K., Schulz, A., Seidel, R.: On the number of cycles in planar graphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 97–107. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Dantzig, G.: Linear Programming and Extensions. Princeton University Press (1962)Google Scholar
  3. 3.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)MATHGoogle Scholar
  6. 6.
    Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters 1(4), 132–133 (1972)MATHCrossRefGoogle Scholar
  7. 7.
    Karp, R.M.: Reducibility among Combinatorial Problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)Google Scholar
  8. 8.
    Liu, H., Wang, J.: A new way to enumerate cycles in graph. In: AICT and ICIW 2006, pp. 57–60. IEEE Computer Society (2006)Google Scholar
  9. 9.
    Sommer, C.: Shortest-Path Queries in Static Networks (2012) (submitted), Preprint available at http://www.sommer.jp/spq-survey.html
  10. 10.
    Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844–856 (1995)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Zündorf, T.: Effiziente Berechnung guter Joggingrouten. Bachelor thesis, Karlsruhe Institute of Technology (October 2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas Gemsa
    • 1
  • Thomas Pajor
    • 1
  • Dorothea Wagner
    • 1
  • Tobias Zündorf
    • 1
  1. 1.Department of Computer ScienceKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations