Advertisement

Computing Multimodal Journeys in Practice

  • Daniel Delling
  • Julian Dibbelt
  • Thomas Pajor
  • Dorothea Wagner
  • Renato F. Werneck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7933)

Abstract

We study the problem of finding multimodal journeys in transportation networks, including unrestricted walking, driving, cycling, and schedule-based public transportation. A natural solution to this problem is to use multicriteria search, but it tends to be slow and to produce too many journeys, several of which are of little value. We propose algorithms to compute a full Pareto set and then score the solutions in a postprocessing step using techniques from fuzzy logic, quickly identifying the most significant journeys. We also propose several (still multicriteria) heuristics to find similar journeys much faster, making the approach practical even for large metropolitan areas.

Keywords

Arrival Time Transportation Network Public Transit Large Metropolitan Area Route Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett, C., Bisset, K., Holzer, M., Konjevod, G., Marathe, M.V., Wagner, D.: Engineering Label-Constrained Shortest-Path Algorithms. In: The Shortest Path Problem: 9th DIMACS Impl. Challenge. DIMACS, vol. 74, pp. 309–319. AMS (2009)Google Scholar
  2. 2.
    Bast, H.: Car or Public Transport – Two Worlds. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 355–367. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bast, H.: Next-Generation Route Planning: Multi-Modal, Real-Time, Personalized (2012) Talk given at ISMPGoogle Scholar
  4. 4.
    Bast, H., Carlsson, E., Eigenwillig, A., Geisberger, R., Harrelson, C., Raychev, V., Viger, F.: Fast Routing in Very Large Public Transportation Networks using Transfer Patterns. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 290–301. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bauer, R., Delling, D., Wagner, D.: Experimental Study on Speed-Up Techniques for Timetable Information Systems. Networks 57(1), 38–52 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bielli, M., Boulmakoul, A., Mouncif, H.: Object modeling and path computation for multimodal travel systems. EJOR 175(3), 1705–1730 (2006)zbMATHCrossRefGoogle Scholar
  7. 7.
    Corne, D., Deb, K., Fleming, P., Knowles, J.: The Good of the Many Outweighs the Good of the One: Evolutionary Multi-Objective Optimization. Connections 1(1), 9–13 (2003)Google Scholar
  8. 8.
    Delling, D., Dibbelt, J., Pajor, T., Wagner, D., Werneck, R.F.: Computing and Evaluating Multimodal Journeys. Technical Report 2012-20, Faculty of Informatics, Karlsruhe Institute of Technology (2012)Google Scholar
  9. 9.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable Route Planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Delling, D., Pajor, T., Werneck, R.F.: Round-Based Public Transit Routing. In: ALENEX, pp. 130–140. SIAM (2012)Google Scholar
  11. 11.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Dibbelt, J., Pajor, T., Wagner, D.: User-Constrained Multi-Modal Route Planning. In: ALENEX, pp. 118–129. SIAM (2012)Google Scholar
  13. 13.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Disser, Y., Müller–Hannemann, M., Schnee, M.: Multi-Criteria Shortest Paths in Time-Dependent Train Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 347–361. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Ensor, A., Lillo, F.: Partial order approach to compute shortest paths in multimodal networks. Technical report (2011), http://arxiv.org/abs/1112.3366v1
  16. 16.
    Farina, M., Amato, P.: A Fuzzy Definition of “Optimality” for Many-Criteria Optimization Problems. IEEE Tr. Syst., Man, and Cyb. A 34(3), 315–326 (2004)CrossRefGoogle Scholar
  17. 17.
    Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact Routing in Large Road Networks Using Contraction Hierarchies. Transp. Sci. 46(3), 388–404 (2012)CrossRefGoogle Scholar
  18. 18.
    Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable Information: Models and Algorithms. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 67–90. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Modesti, P., Sciomachen, A.: A Utility Measure for Finding Multiobjective Shortest Paths in Urban Multimodal Transportation Networks. EJOR 111(3), 495–508 (1998)zbMATHCrossRefGoogle Scholar
  20. 20.
    Zadeh, L.A.: Fuzzy Logic. IEEE Computer 21(4), 83–93 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Delling
    • 1
  • Julian Dibbelt
    • 2
  • Thomas Pajor
    • 2
  • Dorothea Wagner
    • 2
  • Renato F. Werneck
    • 1
  1. 1.Microsoft Research Silicon ValleyMountain ViewUSA
  2. 2.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations