Advertisement

Undercover Branching

  • Timo Berthold
  • Ambros M. Gleixner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7933)

Abstract

In this paper, we present a new branching strategy for nonconvex MINLP that aims at driving the created subproblems towards linearity. It exploits the structure of a minimum cover of an MINLP, a smallest set of variables that, when fixed, render the remaining system linear: whenever possible, branching candidates in the cover are preferred.

Unlike most branching strategies for MINLP, Undercover branching is not an extension of an existing MIP branching rule. It explicitly regards the nonlinearity of the problem while branching on integer variables with a fractional relaxation solution. Undercover branching can be naturally combined with any variable-based branching rule.

We present computational results on a test set of general MINLPs from MINLPLib, using the new strategy in combination with reliability branching and pseudocost branching. The computational cost of Undercover branching itself proves negligible. While it turns out that it can influence the variable selection only on a smaller set of instances, for those that are affected, significant improvements in performance are achieved.

Keywords

Integer Variable Minimum Cover Relaxation Solution Mixed Integer Nonlinear Programming Primal Heuristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497–520 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bixby, R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: Theory and practice – closing the gap. In: Powell, M., Scholtes, S. (eds.) Systems Modelling and Optimization: Methods, Theory, and Applications, pp. 19–49. Kluwer Academic Publisher (2000)Google Scholar
  3. 3.
    Achterberg, T.: Constraint Integer Programming. PhD thesis, TU Berlin (2007)Google Scholar
  4. 4.
    Vigerske, S.: Decomposition in Multistage Stochastic Programming and a Constraint Integer Programming Approach to MINLP. PhD thesis, HU Berlin (2012)Google Scholar
  5. 5.
    Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optimization Methods & Software 24, 597–634 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Karamanov, M., Cornuéjols, G.: Branching on general disjunctions. Math. Prog. 128(1-2), 403–436 (2011)zbMATHCrossRefGoogle Scholar
  7. 7.
    Benichou, M., Gauthier, J., Girodet, P., Hentges, G., Ribiere, G., Vincent, O.: Experiments in mixed-integer programming. Math. Prog. 1, 76–94 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies for mixed integer programming. INFORMS J. Comput. 11, 173–187 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: Finding cuts in the TSP (A preliminary report). Technical Report 95-05, DIMACS (1995)Google Scholar
  10. 10.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, USA (2007)Google Scholar
  11. 11.
    Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Research Letters 33, 42–54 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Achterberg, T., Berthold, T.: Hybrid branching. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 309–311. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proc. of the DAC (July 2001)Google Scholar
  14. 14.
    Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 342–356. Springer, Heidelberg (1997)Google Scholar
  15. 15.
    Kılınç Karzan, F., Nemhauser, G.L., Savelsbergh, M.W.P.: Information-based branching schemes for binary linear mixed-integer programs. Math. Prog. Computation 1(4), 249–293 (2009)zbMATHCrossRefGoogle Scholar
  16. 16.
    Fischetti, M., Monaci, M.: Backdoor branching. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 183–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Fischetti, M., Monaci, M.: Branching on nonchimerical fractionalities. OR Letters 40(3), 159–164 (2012)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: A theoretical and computational study. Math. Prog. 99, 563–591 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Berthold, T., Gleixner, A.M.: Undercover – a primal heuristic for MINLP based on sub-MIPs generated by set covering. In: Bonami, P., Liberti, L., Miller, A.J., Sartenaer, A. (eds.) Proc. of the EWMINLP, pp. 103–112 (April 2010)Google Scholar
  20. 20.
    Berthold, T., Gleixner, A.M.: Undercover: a primal MINLP heuristic exploring a largest sub-MIP. Math. Prog. (2013) doi:10.1007/s10107-013-0635-2Google Scholar
  21. 21.
    Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib – a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  23. 23.
    SCIP: Solving Constraint Integer Programs, http://scip.zib.de
  24. 24.
    CppAD: A Package for Differentiation of C++ Algorithms, http://www.coin-or.org/CppAD
  25. 25.
    Berthold, T., Heinz, S., Vigerske, S.: Extending a CIP framework to solve MIQCPs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 427–444. Springer (2012)Google Scholar
  26. 26.
    Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optimization 4(1), 4–20 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
  28. 28.
    Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Prog. 106(1), 25–57 (2006)zbMATHCrossRefGoogle Scholar
  29. 29.
  30. 30.
    Harjunkoski, I., Westerlund, T., Pörn, R., Skrifvars, H.: Different transformations for solving non-convex trim-loss problems by MINLP. Eur. J. Oper. Res. 105(3), 594–603 (1998)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Timo Berthold
    • 1
  • Ambros M. Gleixner
    • 1
  1. 1.Zuse Institute BerlinBerlinGermany

Personalised recommendations