Evaluation of ILP-Based Approaches for Partitioning into Colorful Components

  • Sharon Bruckner
  • Falk Hüffner
  • Christian Komusiewicz
  • Rolf Niedermeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7933)

Abstract

The NP-hard Colorful Components problem is a graph partitioning problem on vertex-colored graphs. We identify a new application of Colorful Components in the correction of Wikipedia interlanguage links, and describe and compare three exact and two heuristic approaches. In particular, we devise two ILP formulations, one based on Hitting Set and one based on Clique Partition. Furthermore, we use the recently proposed implicit hitting set framework [Karp, JCSS 2011; Chandrasekaran et al., SODA 2011] to solve Colorful Components. Finally, we study a move-based and a merge-based heuristic for Colorful Components. We can optimally solve Colorful Components for Wikipedia link correction data; while the Clique Partition-based ILP outperforms the other two exact approaches, the implicit hitting set is a simple and competitive alternative. The merge-based heuristic is very accurate and outperforms the move-based one. The above results for Wikipedia data are confirmed by experiments with synthetic instances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashley, M.V., Berger-Wolf, T.Y., Chaovalitwongse, W., DasGupta, B., Khokhar, A., Sheikh, S.: An implicit cover problem in wild population study. Discrete Mathematics, Algorithms and Applications 2(1), 21–31 (2010)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Avidor, A., Langberg, M.: The multi-multiway cut problem. Theoretical Computer Science 377(1-3), 35–42 (2007)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bolikowski, Ł.: Scale-free topology of the interlanguage links in Wikipedia. Technical Report arXiv:0904.0564v2, arXiv (2009)Google Scholar
  4. 4.
    Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R., Thiel, S., Uhlmann, J.: Partitioning into colorful components by minimum edge deletions. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 56–69. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing: Evaluation and experiments. Algorithmica 60(2), 316–334 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chandrasekaran, K., Karp, R.M., Moreno-Centeno, E., Vempala, S.: Algorithms for implicit hitting set problems. In: Proc. 22nd SODA, pp. 614–629. SIAM (2011)Google Scholar
  7. 7.
    Chopra, S., Rao, M.R.: On the multiway cut polyhedron. Networks 21(1), 51–89 (1991)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Corel, E., Pitschi, F., Morgenstern, B.: A min-cut algorithm for the consistency problem in multiple sequence alignment. Bioinformatics 26(8), 1015–1021 (2010)CrossRefGoogle Scholar
  9. 9.
    Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Mathematical Programming 45(1-3), 59–96 (1989)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Görke, R., Schumm, A., Wagner, D.: Experiments on density-constrained graph clustering. In: Proc. 2012 ALENEX, pp. 1–15. SIAM (2012)Google Scholar
  11. 11.
    Karp, R.M.: Heuristic algorithms in computational molecular biology. Journal of Computer and System Sciences 77(1), 122–128 (2011)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Lee, T., Wang, Z., Wang, H., Hwang, S.: Web scale taxonomy cleansing. In: Proceedings of the VLDB Endowment, vol. 4, pp. 1295–1306 (2011)Google Scholar
  13. 13.
    de Melo, G., Weikum, G.: Untangling the cross-lingual link structure of Wikipedia. In: Proc. 48th ACL, pp. 844–853. ACM (2010)Google Scholar
  14. 14.
    de Melo, G., Weikum, G.: MENTA: inducing multilingual taxonomies from Wikipedia. In: Proc. 19th CIKM, pp. 1099–1108. ACM (2010)Google Scholar
  15. 15.
    Moreno-Centeno, E., Karp, R.M.: The implicit hitting set approach to solve combinatorial optimization problems with an application to multigenome alignment. Operations Research (to appear, 2013)Google Scholar
  16. 16.
    Oosten, M., Rutten, J.H.G.C., Spieksma, F.C.R.: The clique partitioning problem: Facets and patching facets. Networks 38(4), 209–226 (2001)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Régnier, S.: Sur quelques aspects mathématiques des problèmes de classification automatique. I.C.C. Bulletin 4, 175–191 (1965)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sharon Bruckner
    • 1
  • Falk Hüffner
    • 2
  • Christian Komusiewicz
    • 2
  • Rolf Niedermeier
    • 2
  1. 1.Institut für MathematikFreie Universität BerlinGermany
  2. 2.Institut für Softwaretechnik und Theoretische InformatikTU BerlinGermany

Personalised recommendations