Think Locally, Act Globally: Highly Balanced Graph Partitioning

  • Peter Sanders
  • Christian Schulz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7933)


We present a novel local improvement scheme for graph partitions that allows to enforce strict balance constraints. Using negative cycle detection algorithms this scheme combines local searches that individually violate the balance constraint into a more global feasible improvement. We combine this technique with an algorithm to balance unbalanced solutions and integrate it into a parallel multi-level evolutionary algorithm, KaFFPaE, to tackle the problem. Overall, we obtain a system that is fast on the one hand and on the other hand is able to improve or reproduce many of the best known perfectly balanced partitioning results reported in the Walshaw benchmark.


Local Search Local Search Algorithm Graph Partitioning Balance Constraint Node Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bader, D., Meyerhenke, H., Sanders, P., Wagner, D.: 10th DIMACS Implementation Challenge - Graph Partitioning and Graph ClusteringGoogle Scholar
  2. 2.
    Benlic, U., Hao, J.-K.: An effective multilevel tabu search approach for balanced graph partitioning. Computers & OR 38(7), 1066–1075 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bichot, C., Siarry, P. (eds.): Graph Partitioning. Wiley (2011)Google Scholar
  4. 4.
    Cherkassky, B.V., Goldberg, A.V.: Negative-cycle detection algorithms. In: Díaz, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 349–363. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  5. 5.
    Delling, D., Werneck, R.F.: Better bounds for graph bisection. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 407–418. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Fiduccia, C.M., Mattheyses, R.M.: A Linear-Time Heuristic for Improving Network Partitions. In: 19th Conference on Design Automation, pp. 175–181 (1982)Google Scholar
  7. 7.
    Galinier, P., Boujbel, Z., Coutinho Fernandes, M.: An efficient memetic algorithm for the graph partitioning problem. Annals of Operations Research, 1–22 (2011)Google Scholar
  8. 8.
    Holtgrewe, M., Sanders, P., Schulz, C.: Engineering a Scalable High Quality Graph Partitioner. In: 24th IEEE IPDPS, pp. 1–12 (2010)Google Scholar
  9. 9.
    Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular graphs. SIAM Review 41(2), 278–300 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Osipov, V., Sanders, P.: n-level graph partitioning. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 278–289. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Sanders, P., Schulz, C.: Engineering multilevel graph partitioning algorithms. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 469–480. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: ALENEX, pp. 16–29. SIAM/Omnipress (2012)Google Scholar
  14. 14.
    Sanders, P., Schulz, C.: Think Locally, Act Globally: Perfectly Balanced Graph Partitioning. Technical Report. arXiv:1210.0477 (2012)Google Scholar
  15. 15.
    Soper, A.J., Walshaw, C., Cross, M.: A combined evolutionary search and multilevel optimisation approach to graph-partitioning. J. of Global Optimization 29(2), 225–241 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Walshaw, C., Cross, M.: Mesh Partitioning: A Multilevel Balancing and Refinement Algorithm. SIAM Journal on Scientific Computing 22(1), 63–80 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Walshaw, C., Cross, M.: JOSTLE: Parallel Multilevel Graph-Partitioning Software – An Overview. In: Mesh Partitioning Techniques and Domain Decomposition Techniques, pp. 27–58. Civil-Comp Ltd. (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Peter Sanders
    • 1
  • Christian Schulz
    • 1
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations