Advertisement

Hypergraph Transversal Computation with Binary Decision Diagrams

  • Takahisa Toda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7933)

Abstract

We study a hypergraph transversal computation: given a hypergraph, the problem is to generate all minimal transversals. This problem is related to many applications in computer science and various algorithms have been proposed. We present a new efficient algorithm using the compressed data structures BDDs and ZDDs, and we analyze the time complexity for it. By conducting computational experiments, we show that our algorithm is highly competitive with existing algorithms.

Keywords

hitting set BDD ZDD transversal hypergraph Boolean function data mining logic artificial intelligence monotone dualization 

References

  1. 1.
    Eiter, T., Gottlob, G.: Hypergraph transversal computation and related problems in logic and AI. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 549–564. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Eiter, T., Makino, K., Gottlob, G.: Computational aspects of monotone dualization: A brief survey. Discrete Applied Mathematics 156, 2035–2049 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Fredman, M., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. Journal of Algorithms 21, 618–628 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Gurvich, V., Khachiyan, L.: On generating the irredundant conjunctive and disjunctive normal forms of monotone Boolean functions. Discrete Applied Mathematics 96-97, 363–373 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V.: An efficient implementation of a quasi-polynomial algorithm for generating hypergraph transversals and its application in joint generation. Discrete Applied Mathematics 154, 2350–2372 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Murakami, K., Uno, T.: Efficient algorithms for dualizing large-scale hypergraphs. In: Proc. of the Meeting on Algorithm Engineering & Experiments, ALENEX, New Orleans, Louisiana, USA, pp. 1–13 (January 2013)Google Scholar
  7. 7.
    Dong, G., Li, J.: Mining border descriptions of emerging patterns from dataset pairs. Knowledge and Information Systems 8, 178–202 (2005)CrossRefGoogle Scholar
  8. 8.
    Bailey, J., Manoukian, T., Ramamohanarao, K.: A fast algorithm for computing hypergraph transversals and its application in mining emerging patterns. In: Proc. of the 3rd IEEE International Conference on Data Mining, pp. 485–488. IEEE Computer Society (November 2003)Google Scholar
  9. 9.
    Kavvadias, D., Stavropoulos, E.: An efficient algorithm for the transversal hypergraph generation. Journal of Graph Algorithms and Applications 9(2), 239–264 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hérbert, C., Bretto, A., Crémilleux, B.: A data mining formalization to improve hypergraph minimal transversal computation. Fundamental Informaticae 80, 415–433 (2007)Google Scholar
  11. 11.
    Knuth, D.: The Art of Computer Programming, vol. 4A. Addison-Wesley Professional, New Jersey (2011)Google Scholar
  12. 12.
    Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE Transaction on Computers 35, 677–691 (1986)zbMATHCrossRefGoogle Scholar
  13. 13.
    Yoshinaka, R., Kawahara, J., Denzumi, S., Arimura, H., Minato, S.: Counterexamples to the long-standing conjecture on the complexity of BDD binary operations. Information Processing Letters 112, 636–640 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Proc. of 30th ACM/IEEE Design Automation Conference, DAC 1993, Dallas, Texas, USA, pp. 272–277 (June 1993)Google Scholar
  15. 15.
    Toda, T.: HTC-BDD: Hypergraph Transversal Computation with Binary Decision Diagrams (2013), http://kuma-san.net/htcbdd.html (accessed on March 28)
  16. 16.
    Murakami, K., Uno, T.: Hypergraph Dualization Repository (2013), http://research.nii.ac.jp/~uno/dualization.html (accessed on January 19)
  17. 17.
    Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V.: A global parallel algorithm for the hypergraph transversal problem. Information Processing Letters 101, 148–155 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Coudert, O.: Solving graph optimization problems with ZBDDs. In: Proc. of the 1997 European Conference on Design and Test, Paris, France, pp. 224–228 (March 1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Takahisa Toda
    • 1
  1. 1.ERATO MINATO Discrete Structure Manipulation System Project, Japan Science and Technology AgencyHokkaido UniversitySapporoJapan

Personalised recommendations