Automatic Tuning of GRASP with Evolutionary Path-Relinking

  • L. F. Morán-Mirabal
  • J. L. González-Velarde
  • M. G. C. Resende
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7919)

Abstract

Heuristics for combinatorial optimization are often controlled by discrete and continuous parameters that define its behavior. The number of possible configurations of the heuristic can be large, resulting in a difficult analysis. Manual tuning can be time-consuming, and usually considers a very limited number of configurations. An alternative to manual tuning is automatic tuning. In this paper, we present a scheme for automatic tuning of GRASP with evolutionary path-relinking heuristics. The proposed scheme uses a biased random-key genetic algorithm (BRKGA) to determine good configurations. We illustrate the tuning procedure with experiments on three optimization problems: set covering, maximum cut, and node capacitated graph partitioning. For each problem we automatically tune a specific GRASP with evolutionary path-relinking heuristic to produce fast effective procedures.

Keywords

Randomized heuristics GRASP biased random-key genetic algorithm automatic tuning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental designs and local search. Operations Research 54, 99–114 (2006)MATHCrossRefGoogle Scholar
  2. 2.
    Aiex, R., Pardalos, P., Resende, M., Toraldo, G.: GRASP with path-relinking for three-index assignment. INFORMS J. on Computing 17, 224–247 (2005)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bean, J.: Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing 2, 154–160 (1994)CrossRefGoogle Scholar
  4. 4.
    Beasley, J.: An algorithm for set covering problem. European Journal of Operational Research 31, 85–93 (1987)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Deng, Y., Bard, J.: A reactive GRASP with path relinking for capacitated clustering. J. of Heuristics 17, 119–152 (2011)MATHCrossRefGoogle Scholar
  6. 6.
    Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set covering problem. Operations Research Letters 8, 67–71 (1989)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Feo, T., Resende, M.: Greedy randomized adaptive search procedures. J. of Global Optimization 6, 109–133 (1995)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Ferreira, C., Martin, A., de Souza, C., Weismantel, R., Wolsey, L.: The node capacitated graph partitioning problem: A computational study. Mathematical Programming 81, 229–256 (1998)MathSciNetMATHGoogle Scholar
  9. 9.
    Festa, P., Gonçalves, J.F., Resende, M.G.C., Silva, R.M.A.: Automatic tuning of GRASP with path-relinking heuristics with a biased random-key genetic algorithm. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 338–349. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Festa, P., Pardalos, P., Resende, M., Ribeiro, C.: Randomized heuristics for the MAX-CUT problem. Optimization Methods and Software 7, 1033–1058 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Glover, F.: Tabu search and adaptive memory programming – Advances, applications and challenges. In: Barr, R., Helgason, R., Kennington, J. (eds.) Interfaces in Computer Science and Operations Research, pp. 1–75. Kluwer Academic Publishers (1996)Google Scholar
  12. 12.
    Gonçalves, J., Resende, M.: Biased random-key genetic algorithms for combinatorial optimization. J. of Heuristics 17, 487–525 (2011)CrossRefGoogle Scholar
  13. 13.
    Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM Journal on Optimization 10, 673–696 (1997)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hutter, F., Hoos, H., Stützle, T.: Automatic algorithm configuration based on local search. In: Proceedings of the Twenty-second Conference on Artificial Intelligence (AAAI 2007), pp. 1152–1157 (2007)Google Scholar
  15. 15.
    Johnson, D.: Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences 9, 256–278 (1974)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, NY (1972)CrossRefGoogle Scholar
  17. 17.
    Laguna, M., Martí, R.: GRASP and path relinking for 2-layer straight line crossing minimization. INFORMS J. on Computing 11, 44–52 (1999)MATHCrossRefGoogle Scholar
  18. 18.
    Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation 8, 3–30 (1998)MATHCrossRefGoogle Scholar
  19. 19.
    Mehrotra, A., Trick, M.: Cliques and clustering: A combinatorial approach. Operations Research Letters 22, 1–12 (1997)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Morán-Mirabal, L., Gonzalez-Velarde, J., Resende, M.: Randomized heuristics for handover minimization in mobility networks. Technical report, AT&T Labs Research, Florham Park, New Jersey (August 2012)Google Scholar
  21. 21.
    Pedrola, O., Castro, A., Velasco, L., Ruiz, M., Fernández-Palacios, J.P., Careglio, D.: CAPEX study for a multilayer IP/MPLS-over-flexgrid optical network. J. of Optical Communications and Networking 4, 639–650 (2012)CrossRefGoogle Scholar
  22. 22.
    Prais, M., Ribeiro, C.: Reactive GRASP: An application to a matrix decomposition problem in TDMA traffic assignment. INFORMS J. on Computing 12, 164–176 (2000)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Resende, M., Werneck, R.: A hybrid heuristic for the p-median problem. J. of Heuristics 10, 59–88 (2004)MATHCrossRefGoogle Scholar
  24. 24.
    Spears, W., DeJong, K.: On the virtues of parameterized uniform crossover. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 230–236 (1991)Google Scholar
  25. 25.
    Toso, R., Resende, M.: A C++ application programming interface for biased random-key genetic algorithms. Technical report, AT&T Labs Research, Florham Park, NJ (2012)Google Scholar
  26. 26.
    University of Wisconsin: Condor high throughput computing (2012), http://research.cs.wisc.edu/condor (last visited on June 25, 2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • L. F. Morán-Mirabal
    • 1
  • J. L. González-Velarde
    • 1
  • M. G. C. Resende
    • 2
  1. 1.Tecnológico de MonterreyMonterreyMexico
  2. 2.AT&T Labs ResearchFlorham ParkUSA

Personalised recommendations