Advertisement

Improving Scalability of an Hybrid Infrastructure for E-Science Applications

  • Olivier Terzo
  • Lorenzo Mossucca
  • Pietro Ruiu
  • Giuseppe Caragnano
  • Klodiana Goga
  • Riccardo Notarpietro
  • Manuela Cucca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7776)

Abstract

The Italian GPS receiver for Radio Occultation has been launched from the Satish Dhawan Space Center (Sriharikota, India) on board of the Indian Remote Sensing OCEANSAT-2 satellite. The Italian Space Agency has established a set of Italian universities and research centers to develop an innovative solution in order to quickly elaborate RO data and extract atmospherical profiles. The algorithms adopted can be used to characterize the temperature, pressure and humidity. In consideration of large amount of data to process, an hybrid infrastructure has been created using both the existing grid environment (fully physical) and the virtual environment composed of virtual machines from local cloud infrastructure and Amazon EC2. This enhancement of the project stems from the need of computational power in case of an unexpected burst of calculation that the physical infrastructure would not be able to respond on its own. The virtual environment implemented guarantees flexibility and a progressive scalability and other benefits derived by virtualization and cloud computing.

Keywords

radio occultation grid computing hybrid architecture virtualization scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Italian Space Agency(ASI) (2011), http://www.asi.it/
  2. 2.
    Berman, F., Fox, G., Hey, A.: Grid computing making the global infrastructure a reality, pp. 117–170. Wiley, Chichester (2003)Google Scholar
  3. 3.
    Buyya, R., Abramson, D., Giddy, J.: NIMROD/G: An architeture of a resource management and scheduling system in a global computational grid. In: High Performance Computing Asia 2000, Beijing, China, pp. 283–289 (2000)Google Scholar
  4. 4.
    Dimitriadou, S., Karatza, H.: Job scheduling in a distributed system using backfilling with inaccurate runtime computation. In: International Conference on Complex, Intelligent and Software Intensive System, Washington DC, USA, pp. 329–336 (2010)Google Scholar
  5. 5.
    Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure, pp. 38–63. Morgan Kaufmann, San Francisco (2003)Google Scholar
  6. 6.
    The Globus Alliance (2011), http://www.globus.org/
  7. 7.
    The Globus Consortium (2011), http://www.globusconsortium.org/
  8. 8.
    Gradwell, P.: Grid scheduling with agents. In: Proceedings of the Second International Joint Conference on Autonomous Agents & Multi-Agent Systems (AAMAS 2003), Melbourne, Australia, pp. 229–245 (2003)Google Scholar
  9. 9.
    Indian Space Research Organization (ISRO) (2011), http://www.isro.org/
  10. 10.
    Kurowski, K., Nabrzyski, J.A., Oleksiak, A., Weglarz, J.: Scheduling jobs on the grid multicriteria approach. Computational Methods in Science and Technology 12(2), 123–138 (2006)Google Scholar
  11. 11.
    Kursinski, E.R., Hajj, G.A., Schofield, J.T., Linfield, R.P., Hardy, K.R.: Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. Journal of Geophysical Research 102(D19), 23.429–23.465 (1997)Google Scholar
  12. 12.
    Leonid, O., Rupak, B., Hongzhang, S., Warren, S.: Job scheduling in a heterogeneous grid environment. Lawrence Berkeley National Laboratory (2004), http://www.escholarship.org/uc/item/6659c4xj
  13. 13.
    Luntama, J.P., Kirchengast, G., Borsche, M., Foelsche, U., Steiner, A., Healy, S., von Engeln, A., O’Clerigh, E., Marquardt, C.: Prospects of the EPS GRAS mission for operational atmospheric applications. Bulletin of the American Meteorological Society 89(12), 1863 (2008)CrossRefGoogle Scholar
  14. 14.
    Melbourne, W.G., Davis, E.S., Duncan, C.B., Hajj, G.A., Hardy, K.R., Kursinski, E.R., Meehan, T.K., Young, L.E., Yunck, T.P.: The application of spaceborne GPS to atmospheric limb sounding and global change monitoring, pp. 18–94. JPL Publication (1994)Google Scholar
  15. 15.
    Wickert, J., Schmidt, T., Beyerle, G., Knig, R., Reigber, C., Jakowski, N.: The radio occultation experiment aboard CHAMP: Operational data analysis and validation of vertical atmospheric profiles. Journal of the Meteorological Society of Japan 82(1B), 381–395 (2004)CrossRefGoogle Scholar
  16. 16.
    Mossucca, L., Terzo, O., Molinaro, M., Perona, G., Cucca, M., Notarpietro, R.: Preliminary results for atmospheric remote sensing data processing through Grid Computing. In: The 2010 International Conference on High Performance Computing and Simulation (2010)Google Scholar
  17. 17.
    Mell, P., Grance, T.: The NIST Definition of Cloud Computing (Draft), http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
  18. 18.
    Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/
  19. 19.
    Bagliocco, S., Feruglio, D., Ramunno, G.: La virtualizzazione e i suoi aspetti di sicurezza. Assosecurity, 18–20 (2010)Google Scholar
  20. 20.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the Art of Virtualization. University of Cambridge Computer Laboratory (2003)Google Scholar
  21. 21.
    The Future Of Cloud Computing, Expert Group Report, European Commmission, Information Society and Media, pp. 14–15 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Olivier Terzo
    • 1
  • Lorenzo Mossucca
    • 1
  • Pietro Ruiu
    • 1
  • Giuseppe Caragnano
    • 1
  • Klodiana Goga
    • 1
  • Riccardo Notarpietro
    • 2
  • Manuela Cucca
    • 2
  1. 1.Infrastructure and Systems for Advanced Computing (IS4AC)Istituto Superiore Mario BoellaTorinoItaly
  2. 2.Politecnico di TorinoTorinoItaly

Personalised recommendations