A Scalable Multi-Party Protocol for Privacy-Preserving Equality Test

  • Maryam Sepehri
  • Stelvio Cimato
  • Ernesto Damiani
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 148)

Abstract

Multi-party computation (MPC) is attractive for data owners who are interested in collaborating to execute queries without sharing their data. Since data owners in MPC do not trust each other, finding a secure protocol for privacy-preserving query processing is a major requirement for real world applications. This paper deals with equality test query among data of multiple data owners without revealing anyone’s private data to others. In order to nicely scale with large size data, we show how communication and computation costs can be reduced via a bucketization technique. Our bucketization requires the use of a trusted third party (TTP) only at the beginning of the protocol execution. Experimental tests on horizontally distributed data show the effectiveness of our approach.

Keywords

secure multi-party computation equality test query privacy-preserving query processing and bucketization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Damiani, E., Vimercati, S.D.C., Jajodia, S., Paraboschi, S., Samarati, P.: Balancing confidentiality and efficiency in untrusted relational dbmss. In: Proceedings of the 10th ACM conference on Computer and communications security, CCS 2003, pp. 93–102. ACM, New York (2003)Google Scholar
  2. 2.
    Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing sql over encrypted data in the database-service-provider model. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, SIGMOD 2002, pp. 216–227. ACM, New York (2002)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Yao, A.C.C.: How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science, SFCS 1986, pp. 162–167. IEEE Computer Society, Washington, DC (1986)Google Scholar
  5. 5.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 218–229. ACM, New York (1987)Google Scholar
  6. 6.
    Agrawal, R., Asonov, D., Li, M.K.: Sovereign joins. In: Proceedings of the 22nd International Conference on Data Engineering (2006)Google Scholar
  7. 7.
    Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private databases. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, SIGMOD 2003, pp. 86–97. ACM, New York (2003)CrossRefGoogle Scholar
  8. 8.
    Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection, pp. 1–19. Springer (2004)Google Scholar
  10. 10.
    Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptology 15(3), 177–206 (2002)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254–1281 (2006)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Li, R., Wu, C.: Co-operative private equality test. I. J. Network Security 1(3), 149–153 (2005)Google Scholar
  13. 13.
    Sang, Y., Shen, H., Tan, Y., Xiong, N.: Efficient protocols for privacy preserving matching against distributed datasets. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 210–227. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to association rule mining. Journal of Computer Security 13(4), 593–622 (2005)Google Scholar
  15. 15.
    Damiani, E., De, S., Vimercati, C., Paraboschi, S., Samarati, P.: Computing range queries on obfuscated data. In: Proc. of the Information Processing and Management of Uncertainty in Knowledge-Based Systems (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maryam Sepehri
    • 1
  • Stelvio Cimato
    • 1
  • Ernesto Damiani
    • 1
  1. 1.Dipartimento di InformaticaUniversità Degli Studi di MilanoCremaItaly

Personalised recommendations