Towards Highly Adaptive Data-Intensive Systems: A Research Agenda

  • Marco Mori
  • Anthony Cleve
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 148)


Data-intensive software systems work in different contexts for different users with the aim of supporting heterogeneous tasks in heterogeneous environments. Most of the operations carried out by data-intensive systems are interactions with data. Managing these complex systems means focusing the attention to the huge amount of data that have to be managed despite limited capacity devices where data are accessed. This rises the need of introducing adaptivity in accessing data as the key element for data-intensive systems to become reality. Currently, these systems are not supported during their lifecycle by a complete process starting from design to implementation and execution while taking into account the variability of accessing data. In this paper, we introduce the notion of data-intensive self-adaptive (DISA) systems as data-intensive systems able to perform context-dependent data accesses. We define a classification framework for adaptation and we identify the key challenges for managing the complete lifecycle of DISA systems. For each problem we envisage a possible solution and we present the technological support for an integrated implementation.


data-intensive systems lifecycle context-aware database self-adaptive systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bolchini, C., Curino, C., Orsi, G., Quintarelli, E., Rossato, R., Schreiber, F.A., Tanca, L.: And what can context do for data? ACM 52(11), 136–140 (2009)Google Scholar
  2. 2.
    Bolchini, C., Quintarelli, E., Tanca, L.: Carve: Context-aware automatic view definition over relational databases. IS 38(1), 45–67 (2012)Google Scholar
  3. 3.
    Bolchini, C., Schreiber, F.A., Tanca, L.: A methodology for a very small data base design. Inf. Syst. 32(1), 61–82 (2007)Google Scholar
  4. 4.
    Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.): Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Cheng, S.-W., Poladian, V., Garlan, D., Schmerl, B.R.: Improving architecture-based self-adaptation through resource prediction. In: SEFSAS, pp. 71–88 (2009)Google Scholar
  7. 7.
    Ciaccia, P., Torlone, R.: Modeling the propagation of user preferences. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 304–317. Springer, Heidelberg (2011)Google Scholar
  8. 8.
    Classen, A., Heymans, P., Schobbens, P.-Y.: What’s in a feature: A requirements engineering perspective. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 16–30. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    Cleve, A., Meurisse, J.-R., Hainaut, J.-L.: Database semantics recovery through analysis of dynamic sql statements. J. Data Semantics 15, 130–157 (2011)Google Scholar
  10. 10.
    Cleve, A., Noughi, N., Hainaut, J.-L.: Dynamic program analysis for database reverse engineering. In: Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2011. LNCS, vol. 7680, pp. 297–321. Springer, Heidelberg (2013)Google Scholar
  11. 11.
    Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach based on superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidirectional transformations: A cross-discipline perspective. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Ganter, B., Wille, R., Wille, R.: Formal concept analysis. Springer, Berlin (1999)Google Scholar
  14. 14.
    Glinz, M.: On non-functional requirements. In: RE, pp. 21–26 (2007)Google Scholar
  15. 15.
    Grosso, C.D., Penta, M.D., de Guzmán, I.G.R.: An approach for mining services in database oriented applications. In: CSMR, pp. 287–296 (2007)Google Scholar
  16. 16.
    Inverardi, P., Mori, M.: Model checking requirements at run-time in adaptive systems. In: ASAS 2011, pp. 5–9 (2011)Google Scholar
  17. 17.
    Inverardi, P., Mori, M.: A software lifecycle process to support consistent evolutions. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Self-Adaptive Systems. LNCS, vol. 7475, pp. 239–264. Springer, Heidelberg (2013)Google Scholar
  18. 18.
    Karsai, G., Ledeczi, A., Sztipanovits, J., Peceli, G., Simon, G., Kovacshazy, T.: An approach to self-adaptive software based on supervisory control. In: Laddaga, R., Shrobe, H.E., Robertson, P. (eds.) IWSAS 2001. LNCS, vol. 2614, pp. 24–38. Springer, Heidelberg (2003)Google Scholar
  19. 19.
    Keck, D.O., Kühn, P.J.: The feature and service interaction problem in telecommunications systems. a survey. IEEE TSE 24(10), 779–796 (1998)Google Scholar
  20. 20.
    Mans, R.S., van der Aalst, W.M.P., Vanwersch, R.J.B., Moleman, A.J.: Process mining in healthcare: Data challenges when answering frequently posed questions. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) ProHealth 2012/KR4HC 2012. LNCS, vol. 7738, pp. 140–153. Springer, Heidelberg (2013)Google Scholar
  21. 21.
    Mans, R.S., Schonenberg, H., Song, M., van der Aalst, W.M.P., Bakker, P.J.M.: Application of process mining in healthcare - a case study in a dutch hospital. In: BIOSTEC (Selected Papers), pp. 425–438 (2008)Google Scholar
  22. 22.
    Martinenghi, D., Torlone, R.: A logical approach to context-aware databases. In: D’Atri, A., De Marco, M., Braccini, A.M., Cabiddu, F. (eds.) Management of the Interconnected World, pp. 211–219. Physica-Verlag HD (2010)Google Scholar
  23. 23.
    Metzger, A., et al.: Disambiguating the documentation of variability in software product lines: A separation of concerns, formalization and automated analysis. In: RE, pp. 243–253 (2007)Google Scholar
  24. 24.
    Mori, M., Cleve, A.: Feature-based adaptation of database schemas. In: Botterweck, G. (ed.) MOMPES 2012. LNCS, vol. 7706, pp. 85–105. Springer, Heidelberg (2013)Google Scholar
  25. 25.
    Mori, M., Li, F., Dorn, C., Inverardi, P., Dustdar, S.: Leveraging state-based user preferences in context-aware reconfigurations for self-adaptive systems. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 286–301. Springer, Heidelberg (2011)Google Scholar
  26. 26.
    Nezhad, H.R.M., Saint-Paul, R., Casati, F., Benatallah, B.: Event correlation for process discovery from web service interaction logs. VLDB J. 20(3), 417–444 (2011)Google Scholar
  27. 27.
    Nzekwa, R., Rouvoy, R., Seinturier, L.: A flexible context stabilization approach for self-adaptive application. In: PerCom, pp. 7–12 (2010)Google Scholar
  28. 28.
    Parra, C., et al.: Using constraint-based optimization and variability to support continuous self-adaptation. In: SAC, pp. 486–491 (2012)Google Scholar
  29. 29.
    Parra, C., Cleve, A., Blanc, X., Duchien, L.: Feature-based composition of software architectures. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285, pp. 230–245. Springer, Heidelberg (2010)Google Scholar
  30. 30.
    Quintarelli, E., Rabosio, E., Tanca, L.: Context schema evolution in context-aware data management. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 290–303. Springer, Heidelberg (2011)Google Scholar
  31. 31.
    Rebuge, Á., Ferreira, D.R.: Business process analysis in healthcare environments: A methodology based on process mining. Inf. Syst. 37(2), 99–116 (2012)Google Scholar
  32. 32.
    Roy, B.: Multicriteria Methodology for Decision Aiding. Kluwer Academic Publishers (1996)Google Scholar
  33. 33.
    Rozinat, A., de Jong, I.S.M., Günther, C.W., van der Aalst, W.M.P.: Process mining applied to the test process of wafer scanners in asml. IEEE Transactions on Systems, Man, and Cybernetics, Part C 39(4), 474–479 (2009)Google Scholar
  34. 34.
    Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges. TAAS 4(2) (2009)Google Scholar
  35. 35.
    Saval, G., Puissant, J.P., Heymans, P., Mens, T.: Some challenges of feature-based merging of class diagrams. In: VaMoS, pp. 127–136 (2009)Google Scholar
  36. 36.
    Schäler, M., Leich, T., Rosenmüller, M., Saake, G.: Building information system variants with tailored database schemas using features. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 597–612. Springer, Heidelberg (2012)Google Scholar
  37. 37.
    Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Generic semantics of feature diagrams. Computer Networks 51(2), 456–479 (2007)Google Scholar
  38. 38.
    Siegmund, N., Kästner, C., Rosenmüller, M., Heidenreich, F., Apel, S., Saake, G.: Bridging the gap between variability in client application and database schema. In: BTW (2009)Google Scholar
  39. 39.
    Terwilliger, J.F., Cleve, A., Curino, C.A.: How clean is your sandbox? In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 1–23. Springer, Heidelberg (2012)Google Scholar
  40. 40.
    van der Aalst, W.M.P.: Process mining: Overview and opportunities. ACM Trans. Management Inf. Syst. 3(2), 7 (2012)Google Scholar
  41. 41.
    van der Aalst, et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. Lecture Notes in Business Information Processing, vol. 99, pp. 169–194. Springer, Heidelberg (2012)Google Scholar
  42. 42.
    Villegas, A., Olivé, A.: A method for filtering large conceptual schemas. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 247–260. Springer, Heidelberg (2010)Google Scholar
  43. 43.
    Villegas, A., Olivé, A., Sancho, M.-R.: On computing the importance of associations in large conceptual schemas. In: Düsterhöft, A., Klettke, M., Schewe, K.-D. (eds.) Conceptual Modelling and Its Theoretical Foundations. LNCS, vol. 7260, pp. 216–230. Springer, Heidelberg (2012)Google Scholar
  44. 44.
    Vincke, P.: Multicriteria Decision-Aid. J. Wiley, New York (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marco Mori
    • 1
  • Anthony Cleve
    • 1
  1. 1.PReCISE Research CenterUniversity of NamurNamurBelgium

Personalised recommendations