Advertisement

Transcriptional Regulators: Dynamic Drivers of Multicellular Formation, Cell Differentiation and Development

  • Rafael D. Rosengarten
  • Balaji Santhanam
  • Mariko Katoh-KurasawaEmail author
Chapter

Abstract

In this chapter, we examine what is known about the roles of individual transcription regulators in mediating development in Dictyostelium discoideum. We present a broad review of the field, covering genetic, biochemical, molecular, and bioinformatic experiments that illuminate transcriptional regulation in the context of developmental events. We highlight evidence for evolutionary conservation where it exists, and have sought to underscore the power of RNA sequencing as a tool for comparative studies and global analysis. We believe that as next generation, omics approaches are more widely applied, we may paint a more complete picture of the gene regulatory networks governing dictyostelid development, and gain insight into general evolutionary processes that shape developmental biology.

Keywords

Fruiting Body Stalk Cell Basal Disc Gene ecmA ecmA Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe K, Yanagisawa K (1983) A new class of rapidly developing mutants in Dictyostelium discoideum: implications for cyclic AMP metabolism and cell differentiation. Dev Biol 95:200–210PubMedCrossRefGoogle Scholar
  2. Anjard C, Chang WT, Gross J et al (1998) Production and activity of spore differentiation factors (SDFs) in Dictyostelium. Development 125:4067–4075PubMedGoogle Scholar
  3. Anjard C, Su Y, Loomis WF (2009) Steroids initiate a signaling cascade that triggers rapid sporulation in Dictyostelium. Development 136:803–812. doi: 10.1242/dev.032607 PubMedCrossRefGoogle Scholar
  4. Araki T, Gamper M, Early A et al (1998) Developmentally and spatially regulated activation of a Dictyostelium STAT protein by a serpentine receptor. EMBO J 17:4018–4028. doi: 10.1093/emboj/17.14.4018 PubMedCrossRefGoogle Scholar
  5. Araki T, Kawata T, Williams JG (2012) Identification of the kinase that activates a nonmetazoan STAT gives insights into the evolution of phosphotyrosine-SH2 domain signaling. Proc Natl Acad Sci USA 109:E1931–E1937. doi: 10.1073/pnas.1202715109 PubMedCrossRefGoogle Scholar
  6. Aubry L, Firtel R (1999) Integration of signaling networks that regulate Dictyostelium differentiation. Annu Rev Cell Dev Biol 15:469–517. doi: 10.1146/annurev.cellbio.15.1.469 PubMedCrossRefGoogle Scholar
  7. Benabentos R, Hirose S, Sucgang R et al (2009) Polymorphic members of the lag gene family mediate kin discrimination in Dictyostelium. Curr Biol 19:567–572. doi: 10.1016/j.cub.2009.02.037 PubMedCrossRefGoogle Scholar
  8. Bonner JT (1959) Evidence for the sorting out of cells in the development of the cellular slime molds. Proc Natl Acad Sci USA 45:379–384PubMedCrossRefGoogle Scholar
  9. Bonner JT, Chiang A, Lee J, Suthers HB (1988) The possible role of ammonia in phototaxis of migrating slugs of Dictyostelium discoideum. Proc Natl Acad Sci USA 85:3885–3887PubMedCrossRefGoogle Scholar
  10. Bonner JT, Har D, Suthers HB (1989) Ammonia and thermotaxis: Further evidence for a central role of ammonia in the directed cell mass movements of Dictyostelium discoideum. Proc Natl Acad Sci USA 86:2733–2736PubMedCrossRefGoogle Scholar
  11. Brown JM, Firtel RA (2001) Functional and regulatory analysis of the Dictyostelium G-box binding factor. Dev Biol 234:521–534. doi: 10.1006/dbio.2001.0276 PubMedCrossRefGoogle Scholar
  12. Ceccarelli A, Mahbubani H, Williams JG (1991) Positively and negatively acting signals regulating stalk cell and anterior-like cell differentiation in Dictyostelium. Cell 65:983–989PubMedCrossRefGoogle Scholar
  13. Ceccarelli A, Mahbubani HJ, Insall R et al (1992) A G-rich sequence element common to Dictyostelium genes which differ radically in their patterns of expression. Dev Biol 152:188–193PubMedCrossRefGoogle Scholar
  14. Chang WT, Newell PC, Gross JD (1996) Identification of the cell fate gene stalky in Dictyostelium. Cell 87:471–481PubMedCrossRefGoogle Scholar
  15. Chen Z, Schaap P (2012) The prokaryote messenger c-di-GMP triggers stalk cell differentiation in Dictyostelium. Nature 488:680–683. doi: 10.1038/nature11313 PubMedCrossRefGoogle Scholar
  16. Curk T, Demsar J, Xu Q et al (2005) Microarray data mining with visual programming. Bioinformatics 21:396–398. doi: 10.1093/bioinformatics/bth474 PubMedCrossRefGoogle Scholar
  17. Dormann D, Abe T, Weijer CJ, Williams J (2001) Inducible nuclear translocation of a STAT protein in Dictyostelium prespore cells: implications for morphogenesis and cell-type regulation. Development 128:1081–1088PubMedGoogle Scholar
  18. Dynes JL, Clark AM, Shaulsky G et al (1994) LagC is required for cell–cell interactions that are essential for cell-type differentiation in Dictyostelium. Genes Dev 8:948–958PubMedCrossRefGoogle Scholar
  19. Early AE, Gaskell MJ, Traynor D, Williams JG (1993) Two distinct populations of prestalk cells within the tip of the migratory Dictyostelium slug with differing fates at culmination. Development 118:353–362PubMedGoogle Scholar
  20. Eichinger L, Pachebat JA, Glöckner G et al (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57. doi: 10.1038/nature03481 PubMedCrossRefGoogle Scholar
  21. Escalante R, Iranfar N, Sastre L, Loomis WF (2004) Identification of genes dependent on the MADS box transcription factor SrfA in Dictyostelium discoideum development. Eukaryot Cell 3:564–566PubMedCrossRefGoogle Scholar
  22. Escalante R, Moreno N, Sastre L (2003) Dictyostelium discoideum developmentally regulated genes whose expression is dependent on MADS box transcription factor SrfA. Eukaryot Cell 2:1327–1335PubMedCrossRefGoogle Scholar
  23. Escalante R, Sastre L (1998) A Serum Response Factor homolog is required for spore differentiation in Dictyostelium. Development 125:3801–3808PubMedGoogle Scholar
  24. Escalante R, Sastre L (2002) Regulated expression of the MADS-box transcription factor SrfA mediates activation of gene expression by protein kinase A during Dictyostelium sporulation. Mech Dev 117:201–208PubMedCrossRefGoogle Scholar
  25. Escalante R, Vicente JJ, Moreno N, Sastre L (2001) The MADS-box gene srfA is expressed in a complex pattern under the control of alternative promoters and is essential for different aspects of Dictyostelium development. Dev Biol 235:314–329. doi: 10.1006/dbio.2001.0303 PubMedCrossRefGoogle Scholar
  26. Faix J, Kreppel L, Shaulsky G et al (2004) A rapid and efficient method to generate multiple gene disruptions in Dictyostelium discoideum using a single selectable marker and the Cre-loxP system. Nucleic Acids Res 32:e143. doi: 10.1093/nar/gnh136 PubMedCrossRefGoogle Scholar
  27. Firtel RA (1996) Interacting signaling pathways controlling multicellular development in Dictyostelium. Curr Opin Genet Dev 6:545–554PubMedCrossRefGoogle Scholar
  28. Fukuzawa M (2011) Control of prestalk-cell differentiation by transcription factors. Dev Growth Differ 53:538–547. doi: 10.1111/j.1440-169X.2011.01269.x PubMedCrossRefGoogle Scholar
  29. Fukuzawa M, Araki T, Adrian I, Williams JG (2001) Tyrosine phosphorylation-independent nuclear translocation of a Dictyostelium STAT in response to DIF signaling. Mol Cell 7:779–788PubMedCrossRefGoogle Scholar
  30. Fukuzawa M, Hopper N, Williams J (1997) cudA: a Dictyostelium gene with pleiotropic effects on cellular differentiation and slug behaviour. Development 124:2719–2728PubMedGoogle Scholar
  31. Fukuzawa M, Williams JG (2000) Analysis of the promoter of the cudA gene reveals novel mechanisms of Dictyostelium cell type differentiation. Development 127:2705–2713PubMedGoogle Scholar
  32. Fukuzawa M, Zhukovskaya NV, Yamada Y et al (2006) Regulation of Dictyostelium prestalk-specific gene expression by a SHAQKY family MYB transcription factor. Development 133:1715–1724. doi: 10.1242/dev.02327 PubMedCrossRefGoogle Scholar
  33. Galardi-Castilla M, Pergolizzi B, Bloomfield G et al (2008) SrfB, a member of the Serum Response Factor family of transcription factors, regulates starvation response and early development in Dictyostelium. Dev Biol 316:260–274. doi: 10.1016/j.ydbio.2008.01.026 PubMedCrossRefGoogle Scholar
  34. Gomer RH, Yuen IS, Firtel RA (1991) A secreted 80 x 10(3) Mr protein mediates sensing of cell density and the onset of development in Dictyostelium. Development 112:269–278PubMedGoogle Scholar
  35. Guo K, Anjard C, Harwood A et al (1999) A myb-related protein required for culmination in Dictyostelium. Development 126:2813–2822PubMedGoogle Scholar
  36. Haberstroh L, Galindo J, Firtel RA (1991) Developmental and spatial regulation of a Dictyostelium prespore gene: cis-acting elements and a cAMP-induced, developmentally regulated DNA binding activity. Development 113:947–958PubMedGoogle Scholar
  37. Heidel AJ, Lawal HM, Felder M et al (2011) Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Res 21:1882–1891. doi: 10.1101/gr.121137.111 PubMedCrossRefGoogle Scholar
  38. Hirose S, Benabentos R, Ho H-I et al (2011) Self-recognition in social amoebae is mediated by allelic pairs of tiger genes. Science 333:467–470. doi: 10.1126/science.1203903 PubMedCrossRefGoogle Scholar
  39. Hjorth AL, Khanna NC, Firtel RA (1989) A trans-acting factor required for cAMP-induced gene expression in Dictyostelium is regulated developmentally and induced by cAMP. Genes Dev 3:747–759PubMedCrossRefGoogle Scholar
  40. Hjorth AL, Pears C, Williams JG, Firtel RA (1990) A developmentally regulated trans-acting factor recognizes dissimilar G/C-rich elements controlling a class of cAMP-inducible Dictyostelium genes. Genes Dev 4:419PubMedCrossRefGoogle Scholar
  41. Horn J, Dietz-Schmidt A, Zündorf I et al (1999) A Dictyostelium protein binds to distinct oligo(dA) x oligo(dT) DNA sequences in the C-module of the retrotransposable element DRE. Eur J Biochem 265:441–448PubMedCrossRefGoogle Scholar
  42. Huang E, Blagg SL, Keller T et al (2006) bZIP transcription factor interactions regulate DIF responses in Dictyostelium. Development 133:449–458. doi: 10.1242/dev.02240 PubMedCrossRefGoogle Scholar
  43. Huang E, Talukder S, Hughes TR et al (2011) BzpF is a CREB-like transcription factor that regulates spore maturation and stability in Dictyostelium. Dev Biol 358:137–146. doi: 10.1016/j.ydbio.2011.07.017 PubMedCrossRefGoogle Scholar
  44. Iranfar N, Fuller D, Loomis WF (2006) Transcriptional regulation of post-aggregation genes in Dictyostelium by a feed-forward loop involving GBF and LagC. Dev Biol 290:460–469. doi: 10.1016/j.ydbio.2005.11.035 PubMedCrossRefGoogle Scholar
  45. Jermyn K, Traynor D, Williams J (1996) The initiation of basal disc formation in Dictyostelium discoideum is an early event in culmination. Development 122:753–760PubMedGoogle Scholar
  46. Kawata T (2011) STAT signaling in Dictyostelium development. Dev Growth Differ 53:548–557. doi: 10.1111/j.1440-169X.2010.01243.x PubMedCrossRefGoogle Scholar
  47. Kawata T, Hirano T, Ogasawara S et al (2011) Evidence for a functional link between Dd-STATa and Dd-PIAS, a Dictyostelium PIAS homologue. Dev Growth Differ 53:897–909. doi: 10.1111/j.1440-169X.2011.01296.x PubMedCrossRefGoogle Scholar
  48. Kawata T, Shevchenko A, Fukuzawa M et al (1997) SH2 signaling in a lower eukaryote: a STAT protein that regulates stalk cell differentiation in Dictyostelium. Cell 89:909–916PubMedCrossRefGoogle Scholar
  49. Keller T, Thompson CRL (2008) Cell type specificity of a diffusible inducer is determined by a GATA family transcription factor. Development 135:1635–1645. doi: 10.1242/dev.020883 PubMedCrossRefGoogle Scholar
  50. Kessin RH (2001) Dictyostelium: evolution, cell biology, and development of multicellularity. Cambridge University press, CambridgeCrossRefGoogle Scholar
  51. Konijn TM, Van de Meene JG, Chang YY et al (1969) Identification of adenosine-3′,5′-monophosphate as the bacterial attractant for myxamoebae of Dictyostelium discoideum. J Bacteriol 99:510–512PubMedGoogle Scholar
  52. Krebs JE, Lewin B, Kilpatrick ST, Goldstein ES (2013) Lewin’s Genes XI. Jones & Bartlett Publishers, SudburyGoogle Scholar
  53. Kuwayama H, Obara S, Morio T et al (2002) PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res 30:E2PubMedCrossRefGoogle Scholar
  54. Laub MT, Loomis WF (1998) A molecular network that produces spontaneous oscillations in excitable cells of Dictyostelium. Mol Biol Cell 9:3521–3532PubMedCrossRefGoogle Scholar
  55. Loomis WF, Shaulsky G (2011) Developmental changes in transcriptional profiles. Dev Growth Differ 53:567–575. doi: 10.1111/j.1440-169X.2010.01241.x PubMedCrossRefGoogle Scholar
  56. Loughran G, Pinter K, Newell PC, Gross JD (2000) Identification of STKA-dependent genes in Dictyostelium discoideum. Differentiation 66:71–80. doi: 10.1046/j.1432-0436.2000.660202.x PubMedCrossRefGoogle Scholar
  57. Mann SK, Firtel RA (1989) Two-phase regulatory pathway controls cAMP receptor-mediated expression of early genes in Dictyostelium. Proc Natl Acad Sci USA 86:1924–1928PubMedCrossRefGoogle Scholar
  58. Miranda ER, Rot G, Toplak M, et al. (2012) Transcriptional profiling of Dictyostelium with RNA sequencing. In: Ludwig E and Francisco R (eds) Dictyostelium discoideum Protocols, Methods in Molecular Biology 983. Humana Press, New York. doi: 10.1007/978-1-62703-302-2_8 Google Scholar
  59. Mohanty S, Jermyn KA, Early A et al (1999) Evidence that the Dictyostelium Dd-STATa protein is a repressor that regulates commitment to stalk cell differentiation and is also required for efficient chemotaxis. Development 126:3391–3405PubMedGoogle Scholar
  60. Motohashi KA, Morita N, Kato A, Saito T (2012) Identification of des-methyl-DIF-1 methyltransferase in Dictyostelium purpureum. Biosci Biotechnol Biochem 76:1672–1676PubMedCrossRefGoogle Scholar
  61. Mu X, Lee B, Louis JM, Kimmel AR (1998) Sequence-specific protein interaction with a transcriptional enhancer involved in the autoregulated expression of cAMP receptor 1 in Dictyostelium. Development 125:3689–3698PubMedGoogle Scholar
  62. Mu X, Spanos SA, Shiloach J, Kimmel A (2001) CRTF is a novel transcription factor that regulates multiple stages of Dictyostelium development. Development 128:2569–2579PubMedGoogle Scholar
  63. Nuñez-Corcuera B, Birch JL, Yamada Y, Williams JG (2012) Transcriptional repression by a bZIP protein regulates Dictyostelium prespore differentiation. PLoS ONE 7:e29895. doi: 10.1371/journal.pone.0029895 PubMedCrossRefGoogle Scholar
  64. Núñez-Corcuera B, Serafimidis I, Arias-Palomo E et al (2008) A new protein carrying an NmrA-like domain is required for cell differentiation and development in Dictyostelium discoideum. Dev Biol 321:331–342. doi: 10.1016/j.ydbio.2008.06.027 PubMedCrossRefGoogle Scholar
  65. Ogasawara S, Shimada N, Kawata T (2009) Role of an expansin-like molecule in Dictyostelium morphogenesis and regulation of its gene expression by the signal transducer and activator of transcription protein Dd-STATa. Dev Growth Differ 51:109–122. doi: 10.1111/j.1440-169X.2009.01086.x PubMedCrossRefGoogle Scholar
  66. Olive EW (1901) Dictyostelium purpureum nov. sp. Proceedings of the American Academy of Arts and Sciences 37:340Google Scholar
  67. Otsuka H, Van Haastert PJ (1998) A novel Myb homolog initiates Dictyostelium development by induction of adenylyl cyclase expression. Genes Dev 12:1738–1748PubMedCrossRefGoogle Scholar
  68. Parikh A, Huang E, Dinh C et al (2010a) New components of the Dictyostelium PKA pathway revealed by Bayesian analysis of expression data. BMC Bioinformatics 11:163. doi: 10.1186/1471-2105-11-163 PubMedCrossRefGoogle Scholar
  69. Parikh A, Miranda ER, Katoh-Kurasawa M et al (2010b) Conserved developmental transcriptomes in evolutionarily divergent species. Genome Biol 11:R35. doi: 10.1186/gb-2010-11-3-r35 PubMedCrossRefGoogle Scholar
  70. Pears CJ, Williams JG (1987) Identification of a DNA sequence element required for efficient expression of a developmentally regulated and cAMP-inducible gene of Dictyostelium discoideum. EMBO J 6:195PubMedGoogle Scholar
  71. Poff KL, Skokut M (1977) Thermotaxis by pseudoplasmodia of Dictyostelium discoideum. Proc Natl Acad Sci USA 74:2007–2010PubMedCrossRefGoogle Scholar
  72. Powell-Coffman JA, Schnitzler GR, Firtel RA (1994) A GBF-binding site and a novel AT element define the minimal sequences sufficient to direct prespore-specific expression in Dictyostelium discoideum. Mol Cell Biol 14:5840–5849PubMedCrossRefGoogle Scholar
  73. Raper K (1935) Dictyostelium discoideum, a new species of slime mold from decaying forest leaves. J Agri Res 50:135–147Google Scholar
  74. Raper K (1940) Pseudoplasmodium formation and organization in Dictyostelium discoideum. J Elisha Mitchell Sci Soci 56:241–282Google Scholar
  75. Rathi A, Clarke M (1992) Expression of early developmental genes in Dictyostelium discoideum is initiated during exponential growth by an autocrine-dependent mechanism. Mech Dev 36:173–182PubMedCrossRefGoogle Scholar
  76. Rot G, Parikh A, Curk T et al (2009) dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface. BMC Bioinfo 10:265. doi: 10.1186/1471-2105-10-265 CrossRefGoogle Scholar
  77. Saito T, Kato A, Kay RR (2008) DIF-1 induces the basal disc of the Dictyostelium fruiting body. Dev Biol 317:444–453. doi: 10.1016/j.ydbio.2008.02.036 PubMedCrossRefGoogle Scholar
  78. Schaap P, Winckler T, Nelson M et al (2006) Molecular phylogeny and evolution of morphology in the social amoebas. Science 314:661–663. doi: 10.1126/science.1130670 PubMedCrossRefGoogle Scholar
  79. Schindler J, Sussman M (1977) Ammonia determines the choice of morphogenetic pathways in Dictyostelium discoideum. J Mol Biol 116:161–169PubMedCrossRefGoogle Scholar
  80. Schmith A, Groth M, Ratka J et al (2013) Conserved gene-regulatory function of the carboxy-terminal domain of dictyostelid C-module-binding factor. Eukaryot Cell. doi: 10.1128/EC.00329-12 PubMedGoogle Scholar
  81. Schnitzler GR, Fischer WH, Firtel RA (1994) Cloning and characterization of the G-box binding factor, an essential component of the developmental switch between early and late development in Dictyostelium. Genes Dev 8:502–514PubMedCrossRefGoogle Scholar
  82. Schulkes C, Schaap P (1995) cAMP-dependent protein kinase activity is essential for preaggregative gene expression in Dictyostelium. FEBS Lett 368:381–384PubMedCrossRefGoogle Scholar
  83. Senoo H, Wang H-Y, Araki T et al (2012) An orthologue of the Myelin-gene Regulatory Transcription Factor regulates Dictyostelium prestalk differentiation. Int J Dev Biol 56:325–332. doi: 10.1387/ijdb.120030jw PubMedCrossRefGoogle Scholar
  84. Shimada N, Maeda M, Urushihara H, Kawata T (2004) Identification of new modes of Dd-STATa regulation of gene expression in Dictyostelium by in situ hybridisation. Int J Dev Biol 48:679–682. doi: 10.1387/ijdb.041862ns PubMedCrossRefGoogle Scholar
  85. Siol O, Dingermann T, Winckler T (2006) The C-module DNA-binding factor mediates expression of the Dictyostelium aggregation-specific adenylyl cyclase ACA. Eukaryot Cell 5:658–664. doi: 10.1128/EC.5.4.658-664.2006 PubMedCrossRefGoogle Scholar
  86. Smith E, Williams KL (1980) Evidence for tip control of the slug/fruit switch in slugs of Dictyostelium discoideum. J Embryol Exp Morphol 57:233–240PubMedGoogle Scholar
  87. Sucgang R, Kuo A, Tian X et al (2011) Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol 12:R20. doi: 10.1186/gb-2011-12-2-r20 PubMedCrossRefGoogle Scholar
  88. Sukumaran S, Brown JM, Firtel RA, McNally JG (1998) lagC-null and gbf-null cells define key steps in the morphogenesis of Dictyostelium mounds. Dev Biol 200:16–26. doi: 10.1006/dbio.1998.8934 PubMedCrossRefGoogle Scholar
  89. Thewes S, Krohn S, Schmith A et al (2012) The calcineurin dependent transcription factor TacA is involved in development and the stress response of Dictyostelium discoideum. Eur J Cell Biol 91:789–799. doi: 10.1016/j.ejcb.2012.07.006 PubMedCrossRefGoogle Scholar
  90. Thompson CR, Kay RR (2000) Cell-fate choice in Dictyostelium: intrinsic biases modulate sensitivity to DIF signaling. Dev Biol 227:56–64. doi: 10.1006/dbio.2000.9877 PubMedCrossRefGoogle Scholar
  91. Thompson CRL, Fu Q, Buhay C et al (2004) A bZIP/bRLZ transcription factor required for DIF signaling in Dictyostelium. Development 131:513–523. doi: 10.1242/dev.00939 PubMedCrossRefGoogle Scholar
  92. Wang B, Kuspa A (1997) Dictyostelium development in the absence of cAMP. Science 277:251–254PubMedCrossRefGoogle Scholar
  93. Wang HY, Williams JG (2010) Synergy between two transcription factors directs gene expression in Dictyostelium tip-organiser cells. Int J Dev Biol 54:1301–1307. doi: 10.1387/ijdb.103141hw PubMedCrossRefGoogle Scholar
  94. Weirauch MT, Cote A, Norel R et al (2013) Evaluation of methods for modeling transcription factor sequence specificity. Nat Biotechnol 31:126–134. doi: 10.1038/nbt.2486 PubMedCrossRefGoogle Scholar
  95. Winckler T, Iranfar N, Beck P et al (2004) CbfA, the C-module DNA-binding factor, plays an essential role in the initiation of Dictyostelium discoideum development. Eukaryot Cell 3:1349–1358. doi: 10.1128/EC.3.5.1349-1358.2004 PubMedCrossRefGoogle Scholar
  96. Yamada Y, Kay RR, Bloomfield G et al (2010) A new Dictyostelium prestalk cell sub-type. Dev Biol 339:390–397. doi: 10.1016/j.ydbio.2009.12.045 PubMedCrossRefGoogle Scholar
  97. Yamada Y, Nuñez-Corcuera B, Williams JG (2011) DIF-1 regulates Dictyostelium basal disc differentiation by inducing the nuclear accumulation of a bZIP transcription factor. Dev Biol 354:77–86. doi: 10.1016/j.ydbio.2011.03.024 PubMedCrossRefGoogle Scholar
  98. Zhukovskaya NV, Fukuzawa M, Yamada Y et al (2006) The Dictyostelium bZIP transcription factor DimB regulates prestalk-specific gene expression. Development 133:439–448. doi: 10.1242/dev.02190 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rafael D. Rosengarten
    • 1
  • Balaji Santhanam
    • 1
    • 2
  • Mariko Katoh-Kurasawa
    • 1
    Email author
  1. 1.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  2. 2.Graduate Program in Structural Computational Biology and Molecular BiophysicsBaylor College of MedicineHoustonUSA

Personalised recommendations