Dictyostelids pp 219-242 | Cite as

The Non-dictyostelid Sorocarpic Amoebae



The social life cycle made famous through research on the dictyostelids is not an evolutionary innovation that is solely unique to the dictyostelids. Since 1873, other protistans with similar life styles have been recognized. Historically, they have been allied under various taxonomic classifications over the last 140 years; however, the recent influx of molecular data has proven that analogous methods through a social means to form a spore dispersal structure have independently arose in 7 different lineages of eukaryotic organisms. Here we provide a brief introduction to each of the amoeboid organisms that display this behavior focusing on their life histories and the history of the research on each taxon. These organisms represent one of the most striking examples of ultimate convergent evolution across the greatest possible evolutionary distances in eukaryotic evolution. Research into the molecular and developmental biology, that underlies the evolution of a social life cycle and formation of a fruiting body is still in its infancy when compared to the dictyostelids. However, the genomes from several non-dictyostelid sorocarpic amoebae are soon becoming available, and a new age of research into these fascinating organisms is beginning to gain traction.


  1. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Ander- son OR, Barta JR, Bonser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn LH, Mann DG, McCourt RM, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451. doi:10.1111/j.1550-7408.2005.00053.x
  2. Adl SM, Simpson AG, Lane CE, Lukes J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493. doi:10.1111/j.1550-7408.2012.00644.x PubMedCrossRefGoogle Scholar
  3. Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977PubMedCrossRefGoogle Scholar
  4. Blanton RL (1981) The spore hilum of Acrasis rosea. J of the Elisha Mitchell Sci Soc 97:95–100Google Scholar
  5. Blanton RL (1990) Phylum Acrasea. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of protoctista. Jones and Bartlett Publishers, Inc., Boston, pp 75–87Google Scholar
  6. Bonner JT (1947) Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum. J Exp Zool 106:1–26PubMedCrossRefGoogle Scholar
  7. Bonner JT (1967) The cellular slime molds. Princeton University Press, PrincetonGoogle Scholar
  8. Bonner JT (1998) The origins of multicellularity. Integr Biol 1:27–36. doi:10.1002/(SICI)1520-6602(1998)1:1<27:AID-INBI4>3.0.CO;2-6 CrossRefGoogle Scholar
  9. Bonner JT (2003) On the origin of differentiation. J Biosci 24:523–528Google Scholar
  10. Brefeld O (1869) Dictyostelium mucoroides. Abhandl D Senckenbergischem Naturfosrch Gesellchs 7:85–107Google Scholar
  11. Brown MW, Spiegel FW, Silberman JD (2009) Phylogeny of the forgotten cellular slime mold, Fonticula alba, reveals a key evolutionary branch within opisthokonta. Mol Biol Evol 26:2699–2709. doi:10.1093/molbev/msp185 PubMedCrossRefGoogle Scholar
  12. Brown MW, Silberman JD, Spiegel FW (2010) A morphologically simple species of Acrasis (Heterolobosea, Excavata), Acrasis helenhemmesae n. sp. J Eukaryot Microbiol 57:346–353. doi:10.1111/j.1550-7408.2010.00481.x PubMedCrossRefGoogle Scholar
  13. Brown MW, Silberman JD, Spiegel FW (2011) Slime molds among the Tubulinea (Amoebozoa): molecular systematics and taxonomy of Copromyxa. Protist 162:277–287. doi:10.1016/j.protis.2010.09.003 PubMedCrossRefGoogle Scholar
  14. Brown MW, Kolisko M, Silberman JD, Roger AJ (2012a) Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria. Curr Biol 22:1123–1127. doi:10.1016/j.cub.2012.04.021 PubMedCrossRefGoogle Scholar
  15. Brown MW, Silberman JD, Spiegel FW (2012b) A contemporary evaluation of the acrasids (Acrasidae, Heterolobosea, Excavata). Eur J Protistol 48:103–123. doi:10.1016/j.ejop.2011.10.001 PubMedCrossRefGoogle Scholar
  16. Carroll SB (2001) Chance and necessity: the evolution of morphological complexity and diversity. Nature 409:1102–1109. doi:10.1038/35059227 PubMedCrossRefGoogle Scholar
  17. Cavalier-Smith T (1993) Kingdom protozoa and its 18 phyla. Microbiol Rev 57:953–994PubMedGoogle Scholar
  18. Cavalier-Smith T (2003) Protist phylogeny and the high-level classification of Protozoa. Eur J Protistol 39:338–348. doi:10.1078/0932-4739-00002
  19. Cavalier-Smith T, Chao EE (2006) Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista). J Mol Evol 62:388–420. doi:10.1007/s00239-004-0353-8 PubMedCrossRefGoogle Scholar
  20. Cavender JC (1980) Cellular slime-molds of the Southern Appalachians. Mycologia 72:55–63. doi:10.2307/3759419 CrossRefGoogle Scholar
  21. Cienkowsky L (1873) Guttulina rosea. Transactions of botantical section at the 4th Meeting Russian Naturalists, KazanGoogle Scholar
  22. Cienkowsky L (1876) Ueber einige rhizopoden und verwandte organismen. Mikroskop Anat 12:15–50CrossRefGoogle Scholar
  23. del Campo J, Ruiz-Trillo I (2013) Environmental survey meta-analysis reveals hidden diversity among unicellular opisthokonts. Mol Biol Evol 30:802–805. doi:10.1093/molbev/mst006 Google Scholar
  24. Deasey MC (1982) Aspects of sorogenesis in the cellular slime mold Fonticula alba [dissertation]. University of North Carolina, Chapel Hill, North CarolinaGoogle Scholar
  25. Dykstra MJ, Olive LS (1975) Sorodiplophrys—unusual sorocarp-producing protist. Mycologia 67:873–879. doi:10.2307/3758346 CrossRefGoogle Scholar
  26. Dykstra MJ (1976a) Nuclear and cell-division in Sorodiplophrys stercorea, a labyrinthulid-like protist. Protoplasma 87:347–359. doi:10.1007/Bf01624005 CrossRefGoogle Scholar
  27. Dykstra MJ (1976b) Wall and membrane biogenesis in unusual labyrinthulid-like organism Sorodiplophrys stercorea. Protoplasma 87:329–346. doi:10.1007/Bf01624004 CrossRefGoogle Scholar
  28. Dykstra MJ (1977) Possible phylogenetic significance of mitochondrial configurations in acrasid cellular slime-molds with reference to members of eumycetozoa and fungi. Mycologia 69:579–591PubMedCrossRefGoogle Scholar
  29. Erdos GW, Raper KB (1978) Ultrastuctural aspects of two species of Guttulinopsis. Am J Bot 65:552–561Google Scholar
  30. Fayod V (1883) Beitrag zur kenntnis niederer myxomyceten. Bot Zeit 41:169–177Google Scholar
  31. Fuller MS, Rakatansky RM (1966) A preliminary study of carotenoids in A. rosea. Can J Bot 44:269–274CrossRefGoogle Scholar
  32. Gomaa F, Mitchell EA, Lara E (2013) Amphitremida (Poche, 1913) is a new major, ubiquitous labyrinthulomycete clade. PLoS ONE 8:e53046. doi:10.1371/journal.pone.0053046 PubMedCrossRefGoogle Scholar
  33. Hohl HR, Hamamoto ST (1969) Ultrastructure of Acrasis rosea, a cellular slime mold, during development. J Protozool 16: 333-&. doi:Doi 10.1111/J.1550-7408.1969.Tb02279.X
  34. Hohl HR, Hamamoto ST, Hemmes DE (1968) Ultrastructural aspects of cell elongation, cellulose synthesis, and spore differentiation in Acytostelium leptosomum, a cellular slime mold. Am J Bot 55:783–796Google Scholar
  35. Hohl HR, Miura-Santo LY, Cotter DA. (1970). Ultrastructural changes during formation and germination of microcysts in Polysphondylium pallidum, a cellular slime mould. J Cell Sci 7:285–305Google Scholar
  36. Jack CN, Ridgeway JG, Mehdiabadi NJ, Jones EI, Edwards TA, Queller DC, Strassmann JE (2008) Segregate or cooperate- a study of the interaction between two species of Dictyostelium. BMC Evol Biol 8:293. doi:10.1186/1471-2148-8-293 PubMedCrossRefGoogle Scholar
  37. King N (2004) The unicellular ancestry of animal development. Dev Cell 7:313–325. doi:10.1016/j.devcel.2004.08.010 PubMedCrossRefGoogle Scholar
  38. Lasek-Nesselquist E, Katz LA (2001) Phylogenetic position of Sorogena stoianovitchae and relationships within the class Colpodea (Ciliophora) based on SSU rDNA sequences. J Eukaryot Microbiol 48:604–607PubMedCrossRefGoogle Scholar
  39. Leander CA, Porter D (2001) The Labyrinthulomycota is comprised of three distinct lineages. Mycologia 93:459–464. doi:10.2307/3761732 CrossRefGoogle Scholar
  40. Loeblich AR, Tappan H (1961) Suprageneric classification of the Rhizopoda. J Paleontol 35:245–330Google Scholar
  41. Liu Y, Steenkamp ET, Brinkmann H, Forget L, Philippe H, Lang BF (2009) Phylogenomic analyses predict sistergroup relationship of nucleariids and Fungi and paraphyly of zygomycetes with significant support. BMC Evol Biol 9: Artn 272. Doi: 10.1186/1471-2148-9-272
  42. Marchant HJ, Pickett-Heaps JD (1972) Ultrastructure and differentiation of Hydrodicyton reticulatum VI. Formation of the germ net. Australian J Biol Sci 25:1199–1213Google Scholar
  43. Mergner H (1971) Cnidaria. In: Reverberi G (ed) Experimental embryology of marine and fresh-water invertebrates. North-Holland Publishing Co., Amsterdam, pp 1–84Google Scholar
  44. Nesom M, Olive LS (1972) Copromyxa arborescens, a new cellular slime mold. Mycologia 64:1359–1362. doi:10.2307/3757978 CrossRefGoogle Scholar
  45. Olive EW (1901) A preliminary enumeration of the Sorophoreae. Proc Am Acad of Arts Sci 37:333–344CrossRefGoogle Scholar
  46. Olive EW (1902) Monograph of the Acrasieae. Proc Boston Soci Nat History 30:451–510Google Scholar
  47. Olive LS, Stoianovitch C (1960) Two new members of the Acrasiales. Bull Torrey Botan Club 87:1–20CrossRefGoogle Scholar
  48. Olive LS, Stoianova C, Dutta SK (1961) Variation in cellular slime mold Acrasis rosea. J Protozoology 8:467–472. doi:10.1111/J.1550-7408.1961.Tb01243.X Google Scholar
  49. Olive LS (1965) A developmental study of Guttulinopsis vulgaris (Acrasiales). Am J Bot 52: 513–519. doi:10.2307/2440268 Google Scholar
  50. Olive LS, Stoianovitch C (1974) Cellular slime-mold with flagellate cells. Mycologia 66:685–690. doi:10.2307/3758173 CrossRefGoogle Scholar
  51. Olive LS (1975) The Mycetozoans. Academic Press, New YorkGoogle Scholar
  52. Olive LS, Stoianovitch C, Bennett WE (1983) Descriptions of Acrasid cellular slime-molds-Pocheina rosea and a new species, Pocheina flagellata. Mycologia 75:1019–1029. doi:10.2307/3792658 CrossRefGoogle Scholar
  53. Page FC, Blanton RL (1985) The Heterolobosea (Sarcodina, Rhizopoda), a new class uniting the Schizopyrenida and the Acrasidae (Acrasida). Protistologica 21:121–132Google Scholar
  54. Page FC (1988) A new key to freshwater and soil gymnamoebae. Freshwater Biological Association, Ambleside, CumbriaGoogle Scholar
  55. Raper KB (1960) Levels of cellular interaction in amoeboid populations. Proceedings of the American Philosophical Society 104:579–604Google Scholar
  56. Raper KB (1973) Acrasiomycetes. In: Ainsworth AC, Sparrow FK, Sussman AS (ed) The Fungi, vol. IV B. Academic Press, New York, pp 9–36Google Scholar
  57. Raper KB, Worley AC, Kessler D (1977) Observations on Guttulinopsis vulgaris and Guttulinopsis nivea. Mycologia 69:1016–1030. doi:10.2307/3758784 CrossRefGoogle Scholar
  58. Raper KB, Worley AC, Kurzynski TA (1978) Copromyxella—new genus of acrasidae. Am J Bot 65:1011–1026. doi:10.2307/2442688 CrossRefGoogle Scholar
  59. Raper KB (1984) The Dictyostelids. Princeton University Press, PrincetonGoogle Scholar
  60. Reinhardt DJ (1975) Natural variants of cellular slime-mold Acrasis rosea. J Protozool 22:309–317. doi:10.1111/J.1550-7408.1975.Tb05176.X Google Scholar
  61. Roger AJ, Smith MW, Doolittle RF, Doolittle WF (1996) Evidence for the heterolobosea from phylogenetic analysis of genes encoding glyceraldehyde-3-phosphate dehydrogenase. J Eukaryot Microbiol 43:475–485. doi:10.1111/J.1550-7408.1996.Tb04507.X PubMedCrossRefGoogle Scholar
  62. Romeralo M, Spiegel FW, Baldauf SL (2010) A fully resolved phylogeny of the social amoebas (Dictyostelia) based on combined SSU and ITS rDNA sequences. Protist 161:539–548. doi:10.1016/j.protis.2009.12.006 PubMedCrossRefGoogle Scholar
  63. Rostafinski J (1875). Sluzowce monograpfia (Mycetozoa). ParisGoogle Scholar
  64. Savage RM, Danilchik MV (1993) Dynamics of germ plasm localization and its inhibition by ultraviolet irradiation in early cleavage Xenopus embryos. Dev Biol 157:371–382. doi:10.1006/dbio.1993.1142 PubMedCrossRefGoogle Scholar
  65. Schaap P, Winckler T, Nelson M, Alvarez-Curto E, Elgie B, Hagiwara H, Cavender J, Milano-Curto A, Rozen DE, Dingermann T, Mutzel R, Baldauf SL (2006) Molecular phylogeny and evolution of morphology in the social amoebas. Science 314:661–663. doi:10.1126/science.1130670 PubMedCrossRefGoogle Scholar
  66. Smirnov AV, Nassonova E, Berney C, Fahrni J, Bolivar I, Pawlowski J (2005) Molecular phylogeny and classification of the lobose amoebae. Protist 156:129–142. doi:10.1016/j.protis.2005.06.002 Google Scholar
  67. Spiegel FW, Olive LS (1977) A comparison of the development and cytology of two acrasid cellular slime molds. Second International Mycological Congress, Abstract 625Google Scholar
  68. Spiegel FW, Olive LS (1978) New evidence for validity of Copromyxa protea. Mycologia 70:843–847. doi:10.2307/3759363 CrossRefGoogle Scholar
  69. Townes PL, Holtfreter J (1955) Directed movements and selective adhesion of embryonic amphibian Cells. J Exp Zool 128:53–120. doi:10.1002/Jez.1401280105 CrossRefGoogle Scholar
  70. van Tieghem M (1880) Sur quelques myxomycetes a plasmode agrege. Bulletin of the Society of Botany France 27:317–322Google Scholar
  71. Wilson HV (1907) On some phenomena of coalescence and regeneration in sponges. J Exp Zool 5:245–258. doi:10.1002/Jez.1400050204 CrossRefGoogle Scholar
  72. Worley AC, Raper KB, Hohl M (1979) Fonticula alba: a new cellular slime mold (Acrasiomycetes). Mycologia 71:746–760Google Scholar
  73. Zopf W (1885) Die Pilzthiere oder Schleimpilze. Encykl Naturw 3:1–174Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Biological SciencesMississippi State UniversityMississippiUSA
  2. 2.Department of Biological SciencesUniversity of ArkansasFayettevilleUSA

Personalised recommendations