Logo Recognition Based on the Dempster-Shafer Fusion of Multiple Classifiers

  • Mohammad Ali Bagheri
  • Qigang Gao
  • Sergio Escalera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7884)


The performance of different feature extraction and shape description methods in trademark image recognition systems have been studied by several researchers. However, the potential improvement in classification through feature fusion by ensemble-based methods has remained unattended. In this work, we evaluate the performance of an ensemble of three classifiers, each trained on different feature sets. Three promising shape description techniques, including Zernike moments, generic Fourier descriptors, and shape signature are used to extract informative features from logo images, and each set of features is fed into an individual classifier. In order to reduce recognition error, a powerful combination strategy based on the Dempster-Shafer theory is utilized to fuse the three classifiers trained on different sources of information. This combination strategy can effectively make use of diversity of base learners generated with different set of features. The recognition results of the individual classifiers are compared with those obtained from fusing the classifiers’ output, showing significant performance improvements of the proposed methodology.


Logo recognition ensemble classification Dempster-Shafer fusion Zernike moments generic Fourier descriptor shape signature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alajlan, N., Kamel, M., Freeman, G.: Multi-object image retrieval based on shape and topology. Signal Processing: Image Communication 21(10), 904–918 (2006)CrossRefGoogle Scholar
  2. 2.
    Brodley, A., Lane, T.: Creating and exploiting coverage and diversity. In: Proceedings of AAAI 1996 Workshop on Integrating Multiple Learned Models, Portland, OR, pp. 8–14 (1996)Google Scholar
  3. 3.
    Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), 1–27 (2011)CrossRefGoogle Scholar
  4. 4.
    Ciocca, G., Schettini, R.: Content-based similarity retrieval of trademarks using relevance feedback. Pattern Recognition 34(8), 1639–1655 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Cortelazzo, G., Mian, G., Vezzi, G., Zamperoni, P.: Trademark shapes description by string-matching techniques. Pattern Recognition 27(8), 1005–1018 (1994)CrossRefGoogle Scholar
  6. 6.
    Dempster, A.: Upper and lower probabilities induced by multivalued mappings. Annals of Mathematical Statistics 38(2), 325–339 (1967)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Dietterich, T.G.: Machine learning research: Four current directions. Artificial Intell. Mag. 18(4), 97–136 (1997)Google Scholar
  8. 8.
    Doermann, D., Rivlin, E., Weiss, I.: Applying algebraic and differential invariants for logo recognition. Machine Vision and Applications 9(2), 73–86 (1996)Google Scholar
  9. 9.
    Escalera, S., Fornés, A., Pujol, O., Lladós, J., Radeva, P.: Circular blurred shape model for multiclass symbol recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41(2), 497–506 (2011)CrossRefGoogle Scholar
  10. 10.
    Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    García-Pedrajas, N., Ortiz-Boyer, D.: An empirical study of binary classifier fusion methods for multiclass classification. Information Fusion 12(2), 111–130 (2011)CrossRefGoogle Scholar
  12. 12.
    Ho, T.K.: The random subspace method for constructing decision forests. IEEE Transactions on Pattem Analysis and Machine Intelligence 20, 832–844 (1998)CrossRefGoogle Scholar
  13. 13.
    Hwang, S., Kim, W.: A novel approach to the fast computation of zernike moments. Pattern Recognition 39(11), 2065–2076 (2006)MATHCrossRefGoogle Scholar
  14. 14.
    Jain, A., Vailaya, A.: Shape-based retrieval: A case study with trademark image databases. Pattern Recognition 31(9), 1369–1390 (1998)CrossRefGoogle Scholar
  15. 15.
    Kim, Y., Kim, W.: Content-based trademark retrieval system using a visually salient feature. Image and Vision Computing 16(12-13), 931–939 (1998)CrossRefGoogle Scholar
  16. 16.
    Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Inteligence 20(3), 226–239 (1998)CrossRefGoogle Scholar
  17. 17.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York (2004)MATHCrossRefGoogle Scholar
  18. 18.
    Li, S., Lee, M., Pun, C.: Complex zernike moments features for shape-based image retrieval. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 39(1), 227–237 (2009)CrossRefGoogle Scholar
  19. 19.
    Mohd Anuar, F., Setchi, R., Lai, Y.K.: Trademark image retrieval using an integrated shape descriptor. Expert Systems with Applications (2012), http://dx.doi.org/10.1016/j.eswa.2012.07.031
  20. 20.
    Neumann, J., Samet, H., Soffer, A.: Integration of local and global shape analysis for logo classification. Pattern Recognition Letters 23, 1449–1457 (2002)MATHCrossRefGoogle Scholar
  21. 21.
    Opitz, D.W.: Feature selection for ensembles (1999)Google Scholar
  22. 22.
    Polikar, R.: Ensemble based systems in decision making. IEEE Circuits and Systems Magazine 6(3), 21–45 (2006)CrossRefGoogle Scholar
  23. 23.
    Qi, H., Li, K., Shen, Y., Qu, W.: An effective solution for trademark image retrieval by combining shape description and feature matching. Pattern Recognition 43(6), 2017–2027 (2010)MATHCrossRefGoogle Scholar
  24. 24.
    Rogova, G.: Combining the results of several neural network classifiers. Neural Networks 7, 777–781 (1994)CrossRefGoogle Scholar
  25. 25.
    Seiden, S., Dillencourt, M., Irani, S., Borrey, R., Murphy, T.: Logo detection in document images. In: International Conference on Imaging Science, Systems, and Technology, Las Vegas, Nevada, pp. 446–449 (1997)Google Scholar
  26. 26.
    Zhang, D., Lu, G.: Shape-based image retrieval using generic fourier descriptor. Signal Processing: Image Communication 17(10), 825–848 (2002)CrossRefGoogle Scholar
  27. 27.
    Zhang, D., Lu, G.: Study and evaluation of different fourier methods for image retrieval. Image and Vision Computing 23(1), 33–49 (2005)MATHCrossRefGoogle Scholar
  28. 28.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37(1), 1–19 (2004)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mohammad Ali Bagheri
    • 1
  • Qigang Gao
    • 1
  • Sergio Escalera
    • 2
    • 3
  1. 1.Faculty of Computer ScienceDalhousie UniversityHalifaxCanada
  2. 2.Computer Vision CenterCampus UAB, Edifici OBellaterraSpain
  3. 3.Dept. Matemática Aplicada i AnálisiUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations