BIPOP: A New Algorithm with Explicit Exploration/Exploitation Control for Dynamic Optimization Problems

  • Enrique AlbaEmail author
  • Hajer Ben-Romdhane
  • Saoussen Krichen
  • Briseida Sarasola
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 490)


Dynamic optimization problems (DOPs) have proven to be a realistic model of dynamic environments where the fitness function, problem parameters, and/or problem constraints are subject to changes. Evolutionary algorithms (EAs) are getting pride of place in solving DOPs due to their ability to match with Nature evolution processes. Several approaches have been presented over the years to enhance the performance of EAs to locate the moving optima in the landscape and avoid premature convergence. We address in this chapter a new bi-population EA augmented by a memory of past solutions and validate it with the dynamic knapsack problem (DKP). We suggest, through the use of two populations, to conduct the search to different directions in the problem space: the first population takes in charge exploring while the second population is responsible for exploiting. Once an environment change is detected, knowledge acquired from the old environment is stored in order to recall it whenever the same state reappears. We illustrate our study by presenting several experiments and compare our results to those of standard algorithms.


Genetic Algorithm Local Search Dynamic Environment Variable Neighborhood Search Dynamic Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alba, E.: Parallel Metaheuristics. John Wiley & Sons, Inc. (2005)Google Scholar
  2. 2.
    Alba, E., Sarasola, B.: Abc, a new performance tool for algorithms solving dynamic optimization problems. In: Proc. 2010 IEEE Congr. Evol. Comput., pp. 1–7 (2010)Google Scholar
  3. 3.
    Alba, E., Sarasola, B.: Measuring fitness degradation in dynamic optimization problems. In: Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 572–581. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Areibi, S.: Effective exploration & exploitation of the solution space via memetic algorithms for the circuit partition problem. In: Recent Advances in Memetic Algorithms. STUDFUZZ, vol. 166, pp. 161–182. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bosman, P.A.N.: Learning, anticipation and time-deception in evolutionary online dynamic optimization. In: Proc. 2005 Workshops on Genetic and Evol. Comput., pp. 39–47. ACM (2005)Google Scholar
  6. 6.
    Bosman, P.A.N.: Learning and anticipation in online dynamic optimization. In: Evolutionary Computation in Dynamic and Uncertain Environments. SCI, vol. 51, pp. 129–152. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Branke, J., Kau, T., Schmidt, l., Schmeck, H.: A multi-population approach to dynamic optimization problems. In: Proc. 4th Int. Conf. Adaptive Comput. Des. Manuf., pp. 299–308 (2000)Google Scholar
  8. 8.
    Branke, J., Schmeck, H.: Designing evolutionary algorithms for dynamic optimization problems. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing: Theory and Applications. Natural Computing Series, pp. 239–262. Springer-Verlag New York, Inc. (2003)Google Scholar
  9. 9.
    Cedeno, W., Vemuri, V.: On the use of niching for dynamic landscapes. In: Proc. 1997 IEEE Int. Conf. Evol. Comput., pp. 361–366 (1997)Google Scholar
  10. 10.
    Cheng, H., Yang, S.: Multi-population genetic algorithms with immigrants scheme for dynamic shortest path routing problems in mobile ad hoc networks. In: Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 562–571. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environments. In: Proc. 5th Int. Conf. Genetic Algorithms, pp. 523–530 (1993)Google Scholar
  12. 12.
    Dasgupta, D., Mcgregor, D.R.: Nonstationary function optimization using the structured genetic algorithm. In: Proc. 2nd Int. Conf. Parallel Problem Solving From Nature, pp. 145–154 (1992)Google Scholar
  13. 13.
    Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: Proc. 2nd Int. Conf. Genetic Algorithms, pp. 59–68 (1987)Google Scholar
  14. 14.
    Greene, F.: A method for utilizing diploid/dominance in genetic search. In: Proc. 1st IEEE Conf. Evol. Comput., pp. 439–444. IEEE Press (1994)Google Scholar
  15. 15.
    Grefenstette, J.: Genetic algorithms for changing environments. In: Proc. 2nd Int. Conf. Parallel Problem Solving from Nature, pp. 137–144 (1992)Google Scholar
  16. 16.
    Hadad, B., Eick, C.: Supporting polyploidy in genetic algorithms using dominance vectors. In: Angeline, P.J., McDonnell, J.R., Reynolds, R.G., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, pp. 223–234. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments–a survey. IEEE Trans. Evol. Comput. 9, 303–317 (2005)CrossRefGoogle Scholar
  18. 18.
    Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algorithm. In: Proc. 1997 IEEE Int. Conf. Syst., Man, and Cybern., vol. 5, pp. 4104–4108 (1997)Google Scholar
  19. 19.
    Lewis, J., Hart, E., Ritchie, G.: A comparison of dominance mechanisms and simple mutation on non-stationary problems. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 139–148. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Liu, Y., Liu, C.: A schema-guiding evolutionary algorithm for 0-1 knapsack problem. In: Proc. 2009 Int. Assoc. of Computer Science and Information Technology - Spring Conf., pp. 160–164. IEEE Computer Society (2009)Google Scholar
  21. 21.
    Lung, R., Dumitrescu, D.: Evolutionary swarm cooperative optimization in dynamic environments. Natural Computing 9(1), 83–94 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Mori, N., Kita, H., Nishikawa, Y.: Adaptation to a changing environment by means of the thermodynamical genetic algorithm. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 513–522. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  23. 23.
    Morrison, R., De Jong, K.: Triggered hypermutation revisited. In: Proc. 2000 IEEE Congr. Evol. Comput., vol. 2, pp. 1025–1032 (2000)Google Scholar
  24. 24.
    Pisinger, D.: A minimal algorithm for the 0-1 knapsack problem. Oper. Res. 45(5), 758–767 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Pisinger, D.: Core problems in knapsack algorithms. Oper. Res. 47, 570–575 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Rohlfshagen, P., Bullinaria, J.: Alternative splicing in evolutionary computation: Adaptation in dynamic environments. In: Proc. 2006 IEEE Congr. Evol. Comput., pp. 2277–2284 (2006)Google Scholar
  27. 27.
    Rohlfshagen, P., Yao, X.: The dynamic knapsack problem revisited: A new benchmark problem for dynamic combinatorial optimisation. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 745–754. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Sarasola, B., Khouadjia, M.R., Alba, E., Jourdan, L., Talbi, E.-G.: Flexible variable neighborhood search in dynamic vehicle routing. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 344–353. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Simões, A., Costa, E.: Evolutionary algorithms for dynamic environments: Prediction using linear regression and markov chains. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 306–315. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  30. 30.
    Simões, A., Costa, E.: Improving prediction in evolutionary algorithms for dynamic environments. In: Proc. 11th Annual Conf. Genetic and Evol. Comput., pp. 875–882. ACM (2009)Google Scholar
  31. 31.
    Wang, H., Wang, D., Yang, S.: Triggered memory-based swarm optimization in dynamic environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 637–646. Springer, Heidelberg (2007)Google Scholar
  32. 32.
    Xiangwei, Z., Hong, L.: A cooperative dual-swarm pso for dynamic optimization problems. In: Proc. 7th Int. Conf. Natural Computation, vol. 2, pp. 1131–1135 (2011)Google Scholar
  33. 33.
    Yang, S.: Genetic algorithms with memory-and elitism-based immigrants in dynamic environments. Evol. Comput. 16, 385–416 (2008)CrossRefGoogle Scholar
  34. 34.
    Yang, S., Li, C.: A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans. Evol. Comput. 14(6), 959–974 (2010)CrossRefGoogle Scholar
  35. 35.
    Yang, S., Yao, X.: Population-based incremental learning with associative memory for dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)CrossRefGoogle Scholar
  36. 36.
    Younes, A., Basir, O., Calamai, P.: Adaptive control of genetic parameters for dynamic combinatorial problems. In: Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr, W., Hartl, R.F., Reimann, M. (eds.) Metaheuristics. Operations Research/Computer Science Interfaces Series, vol. 39, pp. 205–223. Springer US (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Enrique Alba
    • 1
    Email author
  • Hajer Ben-Romdhane
    • 2
  • Saoussen Krichen
    • 3
  • Briseida Sarasola
    • 1
  1. 1.Departamento de Lenguajes y Ciencias de la ComputaciónUniversidad de Málaga, E.T.S.I. InformáticaMálagaSpain
  2. 2.LARODEC Laboratory, Institut Supérieur de GestionUniversity of TunisLe BardoTunisia
  3. 3.FSJEG de JendoubaUniversity of JendoubaJendoubaTunisia

Personalised recommendations