Advertisement

Cognitive Modeling and Support for Ambient Assistance

  • Judith Michael
  • Andreas Grießer
  • Tina Strobl
  • Heinrich C. Mayr
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 137)

Abstract

The aim of the Human Behavior Monitoring and Support (HBMS) project is to learn about the individual skills and behavioral knowledge of a person in order to support that person when needed. It is intended as a contribution to enable elderly people to live autonomously in their domestic environment as long as possible. The basic idea is to build a cognitive model of the behavior of a person while she/he is of sound mind and memory. In case of mental incapacitation this model will be used as a knowledge base for generating support information. The paper outlines the first results of the HBMS project with a focus on the investigative survey and the overall architecture of the chosen approach.

Keywords

Cognitive Modeling Ambient Assistance Model Integration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Publications Office of the European Union: Demography Report 2011: Older, more numerous and diverse Europeans. Commission Staff Working Document (2011), http://ec.europa.eu/social/main.jsp?catId=502&langId=en
  2. 2.
    Berting-Hüneke, C.: Selbständigkeit im Alter erhalten. Springer, Berlin (2002)CrossRefGoogle Scholar
  3. 3.
    Steg, H., Strese, H., Loroff, C., Hull, J., Schmidt, S.: Europe Is Facing a Demographic Challenge. In: Ambient Assisted Living Offers Solutions. VDI/VDE/IT, Berlin (2006)Google Scholar
  4. 4.
    Griesser, A., Michael, J., Mayr, H.C.: Verhaltensmodellierung und automatisierte Unterstützung im AAL Projekt HBMS, 5. Deutscher AAL-Kongress, Berlin (2012)Google Scholar
  5. 5.
    Bucks, R.S., Ashworth, D.L., Wilcock, G.K., Siegfried, K.: Assessment of Activities of Daily Living in Dementia: Development of the Bristol Activities of Daily Living Scale. Age and Ageing 25, 113–120 (1996)CrossRefGoogle Scholar
  6. 6.
    Hoffmeyer, A., Yordanova, K., Teipel, S., Kirste, T.: Sensor based monitoring for people with dementia: Searching for movement markers in Alzheimer’s disease for a early diagnostic. In: Workshop on User Interaction Methods for Elderly People With Dementia at the AmI, vol. 11 (2011)Google Scholar
  7. 7.
    Bader, S., Kirste, T.: A Tutorial Introduction to Automated Activity and Intention Recognition. In: Lecture Notes for the Interdisciplinary Colleg, IK (2011)Google Scholar
  8. 8.
    Clement, J., Ploennigs, J., Kabitzsch, K.: Smart Meter: Detect and Individualize ADLs. 5. Deutscher AAL-Kongress, Berlin (2012)Google Scholar
  9. 9.
    Zhou, F., et al.: A Case-Driven Ambient Intelligence System for Elderly in-Home Assistance Applications. Institute of Electrical and Electronics Engineers, New-York (2011)Google Scholar
  10. 10.
    Vöhringer, J., Mayr, H.C.: Integration of schemas on the pre-design level using the KCPM-approach. In: Nilsson, A.G., Gustas, R., Wojtkowski, W.G., Wojtkowski, W., Wrycza, S., Zupancic, J. (eds.) Advances in Information Systems Development: Bridging the Gap between Academia & Industry. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Mayr, H.C., Kop, C.: A User Centered Approach to Requirements Modeling. In: Glinz, M., Müller-Luschnat, G. (eds.) Modellierung 2002, Köllen, Bonn. Lecture Notes in Informatics (LNI), vol. P-12, pp. 75–86 (2002)Google Scholar
  12. 12.
    Soffer, P., Rolland, C.: Combining Intention Oriented and State based Process Modelling, Conference on The Entity-Relationship Approach (ER), Klagenfurt, Austria (2005)Google Scholar
  13. 13.
    Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications 7, 39–59 (1994)Google Scholar
  14. 14.
    Reischies, M., Lindenberger, U.: Grenzen und Potentiale kognitiver Leistungsfähigkeit im Alter. In: Die Berliner Altersstudie. Akad.-Verl., Berlin (2010)Google Scholar
  15. 15.
    McAffer, J., Lemieux, J.: Eclipse Rich Client Platform: Designing, Coding, and Packaging Java(TM) Applications. Addison-Wesley Professional (2005)Google Scholar
  16. 16.
    Antoniou, G., Van Harmelen, F.: Web Ontology Language: OWL. Handbook on Ontologies (2004)Google Scholar
  17. 17.
    Jouault, F., Kurtev, I.: On the Architectural Alignment of ATL and QVT. In: Proceedings of ACM Symposium on Applied Computing (SAC 2006), Model Transformation Track, Dijon, Bourgogne, France (2006)Google Scholar
  18. 18.
  19. 19.
    Wu, C., Liao, C.: Service-Oriented Smart-Home Architecture Based on OSGi and Mobile-Agent Technology. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 193–205 (2007)Google Scholar
  20. 20.
    Michael, J., Bolshutkin, V., Leitner, S., Mayr, H.C.: Behavior Modeling for Ambient Assistance. In: Proceedings of the International Conference on Management and Service Science, MASS 2012 (2012) (in press)Google Scholar
  21. 21.
    Bellström, P., Vöhringer, J.: Towards the Automation of Modeling Language Independent Schema Integration. In: Proceedings of the 2009 International Conference on Information, Process, and Knowledge Management, pp. 110–115. IEEE Computer Society Press (2009)Google Scholar
  22. 22.
    Khan, A., Minhas, A., Niazi, M.: Representation of uml activity models as ontology. In: Proc. of 5th Int. Conference on Innovations in Information Technology (2008)Google Scholar
  23. 23.
    Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoned Web Semantics: Science. Services and Agents on the World Wide Web 5(2), 51–53 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Judith Michael
    • 1
  • Andreas Grießer
    • 1
  • Tina Strobl
    • 1
  • Heinrich C. Mayr
    • 1
  1. 1.Alpen-Adria-Universität KlagenfurtKlagenfurtAustria

Personalised recommendations