Heuristics-Based Workload Analysis for Relational DBMSs

  • Andreas Lübcke
  • Veit Köppen
  • Gunter Saake
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 137)


Database systems are widely used in heterogeneous applications. However, it is difficult to decide which database management system meets requirements of a certain application best. This observation is even more true for scientific and statistical data management, because new application and research fields are often first observed in this domain. New requirements are often implied to data management while discovering unknown research and applications areas. That is, heuristics and tools do not exist to select an optimal database management system. We develop a decision support framework to support application-performance analyses on database management systems. We use mappings and merge workload information to patterns. We present heuristics for performance estimation to select the optimal database management system for a given workload. We show, these heuristics improve our decision framework by complexity reduction without loss of accuracy. Finally, we evaluate our heuristics considering standard database benchmarks.


Architecture performance estimation heuristics design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Aba08]
    Daniel, J.: Abadi. Query execution in column-oriented database systems. PhD thesis, Cambridge, MA, USA, Adviser: Madden, Samuel (2008)Google Scholar
  2. [ABC+76]
    Astrahan, M.M., Blasgen, M.W., Chamberlin, D.D., Eswaran, K.P., Gray, J., Griffiths, P.P., Frank King III, W., Lorie, R.A., McJones, P.R., Mehl, J.W., Putzolu, G.R., Traiger, I.L., Wade, B.W., Watson, V.: System R: Relational Approach to Database Management. ACM Trans. Database Syst. 1(2), 97–137 (1976)CrossRefGoogle Scholar
  3. [AFG+09]
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley View of Cloud Computing. Technical Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley (February 2009)Google Scholar
  4. [AMH08]
    Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-stores: How different are they really?. In: SIGMOD 2008, pp. 967–980 (2008)Google Scholar
  5. [BYV08]
    Buyya, R., Yeo, C.S., Venugopal, S.: Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services as Computing Utilities. In: HPCC 2008, pp. 5–13 (2008)Google Scholar
  6. [CCS93]
    Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP to User-Analysts: An IT Mandate. Ann ArborMichigan 24 (1993)Google Scholar
  7. [CDG+06]
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.: Bigtable: A Distributed Storage System for Structured Data. In: OSDI 2006, pp. 205–218 (2006)Google Scholar
  8. [CN07]
    Chaudhuri, S., Narasayya, V.: Self-tuning database systems: A decade of progress. In: VLDB 2007, pp. 3–14 (2007)Google Scholar
  9. [DG04]
    Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: OSDI 2004, pp. 137–150 (2004)Google Scholar
  10. [DG08]
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  11. [DHJ+07]
    DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value store. In: SOSP 2007, pp. 205–220 (2007)Google Scholar
  12. [Fer06]
    Ferraris, D.R.L.: TPCC-UVa: an open-source TPC-C implementation for global performance measurement of computer systems. SIGMOD Record 35(4), 6–15 (2006)CrossRefGoogle Scholar
  13. [Fre97]
    French, C.D.: Teaching an OLTP database kernel advanced datawarehousing techniques. In: ICDE 1997, pp. 194–198 (1997)Google Scholar
  14. [FZRL09]
    Foster, I.T., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-Degree Compared. CoRR 2009, abs/0901.0131 (2009)Google Scholar
  15. [GD87]
    Graefe, G., DeWitt, D.J.: The EXODUS Optimizer Generator. In: SIGMOD 1987, pp. 160–172 (1987)Google Scholar
  16. [HGR09]
    Holze, M., Gaidies, C., Ritter, N.: Consistent on-line classification of DBS workload events. In: CIKM 2009, pp. 1641–1644 (2009)Google Scholar
  17. [Idr10]
    Idreos, S.: Database Cracking: Torwards Auto-tuning Database Kernels. PhD thesis (2010)Google Scholar
  18. [KN11]
    Kemper, A., Neumann, T.: HyPer: A hybrid OLTP&OLAP main memory database system based on virtual memory snapshots. In: ICDE 2011, pp. 195–206 (2011)Google Scholar
  19. [KS97]
    Korth, H.F., Silberschatz, A.: Database Research Faces the Information Explosion. Commun. ACM 40(2), 139–142 (1997)CrossRefGoogle Scholar
  20. [LKS11]
    Lübcke, A., Köppen, V., Saake, G.: A Decision Model to Select the Optimal Storage Architecture for Relational Databases. In: Proceedings of the Fifth IEEE International Conference on Research Challenges in Information Science, RCIS 2011, pp. 74–84 (2011)Google Scholar
  21. [LS10]
    Lübcke, A., Saake, G.: A Framework for Optimal Selection of a Storage Architecture in RDBMS. In: DB&IS 2010, pp. 65–76 (2010)Google Scholar
  22. [LSKS10]
    Lübcke, A., Schäler, M., Köppen, V., Saake, G.: Workload-based Heuristics for Evaluation of Physical Database Architectures. In: DB&IS 2012, pp. 3–10 (2012)Google Scholar
  23. [Lüb10]
    Lübcke, A.: Challenges in Workload Analyses for Column and Row Storess. In: Grundlagen von Datenbanken (2010)Google Scholar
  24. [NK10]
    Naydenova, I., Kaloyanova, K.: Sparsity Handling and Data Explosion in OLAP Systems. In: MCIS 2010, pp. 62–70 (2010)Google Scholar
  25. [ÖV11]
    Tamer Özsu, M., Valdurie, P.: Principles of Distributed Database Systems, 3rd edn. Springer (2011)Google Scholar
  26. [Pla09]
    Plattner, H.: A common database approach for OLTP and OLAP using an in-memory column database. In: SIGMOD 2009, pp. 1–2. ACM (2009)Google Scholar
  27. [Raa93]
    Raatikainen, K.E.E.: Cluster Analysis and Workload Classification. SIGMETRICS Performance Evaluation Review 20(4), 24–30 (1993)CrossRefGoogle Scholar
  28. [SAB+05]
    Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E.J., O’Neil, P.E., Rasin, A., Tran, N., Zdonik, S.B.: C-Store: A column-oriented DBMS. In: VLDB 2005, pp. 553–564. VLDB Endowment (2005)Google Scholar
  29. [SB08]
    Santos, R.J., Bernardino, J.: Real-time data warehouse loading methodology. In: IDEAS 2008, pp. 49–58 (2008)Google Scholar
  30. [Tra10]
    Transaction Processing Performance Council. TPC BENCHMARKTM H. White Paper, Decision Support Standard Specification,Revision 2.11.0 (April 2010)Google Scholar
  31. [VMRC04]
    Vaisman, A.A., Mendelzon, A.O., Ruaro, W., Cymerman, S.G.: Supporting dimension updates in an OLAP server. Information Systems 29(2), 165–185 (2004)CrossRefGoogle Scholar
  32. [ZAL08]
    Zhu, Y., An, L., Liu, S.: Data Updating and Query in Real-Time Data Warehouse System. In: CSSE 2008, pp. 1295–1297 (2008)Google Scholar
  33. [ZNB08]
    Zukowski, M., Nes, N., Boncz, P.A.: DSM vs. NSM: CPU performance tradeoffs in block-oriented query processing. In: DaMoN 2008, pp. 47–54 (2008)Google Scholar
  34. [ZRL+04]
    Zilio, D.C., Rao, J., Lightstone, S., Lohman, G.M., Storm, A.J., Garcia-Arellano, C., Fadden, S.: DB2 Design Advisor: Integrated automatic physical database design. In: VLDB 2004, pp. 1087–1097. VLDB Endowment (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas Lübcke
    • 1
  • Veit Köppen
    • 1
  • Gunter Saake
    • 1
  1. 1.University of MagdeburgMagdeburgGermany

Personalised recommendations