Advertisement

Neurobiologische und genetische Befunde bei pathologischem Glücksspiel

Chapter
  • 4.4k Downloads

Zusammenfassung

Die neurobiologischen Grundlagen von stoffgebundenen Süchten sind gut untersucht. In den letzten Jahren hat sich jedoch auch die Befundlage zu den neurobiologischen Grundlagen von Verhaltenssüchten und insbesondere vom pathologischem Glücksspiel zunehmend verbessert. Dieses Kapitel gibt einen Überblick über den aktuellen Stand der Forschung bei pathologischem Glücksspiel. Dabei werden Erkenntnisse, die mittels verschiedener moderner bildgebenden Verfahren sowie elektrophysiologischer Methoden gewonnen wurden, wie auch genetische Befunde zusammenfassend dargestellt. Die Ergebnisse deuten auf Veränderungen in den Hirnfunktionen als auch der Hirnstrukturen bei pathologischen Spielern im Vergleich zu gesunden Kontrollen hin. Wie auch bei stoffgebunden Süchten spielt das dopaminerge mesokortikolimbische Belohnungssystem eine Schlüsselrolle bei der Entstehung und Aufrechterhaltung der „Glücksspielsucht“.

Literatur

  1. Balodis IM, Kober H, Worhunsky PD et al. (2012) Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry 71: 749–757PubMedCentralPubMedCrossRefGoogle Scholar
  2. Blanco C, Orensanz-Muñoz L, Blanco-Jerez C et al. (1996) Pathological gambling and platelet MAO activity: a psychobiological study. Am J Psychiatry 153: 119–121PubMedGoogle Scholar
  3. Boileau I, Payer D, Chugani B et al. (2013a) The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C]raclopride. Addiction 108, 953–63. doi:10.1111/add.12066PubMedCrossRefGoogle Scholar
  4. Boileau I, Payer D, Chugani B et al. (2013b) In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [(11)C]-(+)-PHNO. Mol Psychiatry doi:10.1038/mp.2013.163Google Scholar
  5. Bühler M, Mann K (2011) Alcohol and the human brain: a systematic review of different neuroimaging methods. Alcohol Clin Exp Res 35: 1771–1793. doi:10.1111/j.1530-0277.2011.01540.xPubMedCrossRefGoogle Scholar
  6. Bühler M, Vollstädt-Klein S, Kobiella A et al. (2010) Nicotine dependence is characterized by disordered reward processing in a network driving motivation. Biol Psychiatry 67: 745–752. doi:10.1016/j.biopsych.2009.10.029PubMedCrossRefGoogle Scholar
  7. Clark L, Limbrick-Oldfield EH (2013) Disordered gambling: a behavioral addiction. Curr Opin Neurobiol 23: 655–659PubMedCrossRefGoogle Scholar
  8. Clark L, Stokes PR, Wu K, Michalczuk R et al. (2012) Striatal dopamine Dâ/Dâ receptor binding in pathological gambling is correlated with mood-related impulsivity. Neuroimage 63: 40–46. doi:10.1016/j.neuroimage.2012.06.067PubMedCentralPubMedCrossRefGoogle Scholar
  9. Comings D, Gade-Andavolu R, Gonzalez N et al. (2001) The additive effect of neurotransmitter genes in pathological gambling. Clin Genet 60: 107–116. doi:10.1034/j.1399-0004.2001.600204.xPubMedCrossRefGoogle Scholar
  10. Crockford DN, Goodyear B, Edwards J et al. (2005) Cue-Induced Brain Activity in Pathological Gamblers. Biol Psychiatry 58: 787–795PubMedCrossRefGoogle Scholar
  11. De Greck M, Enzi, Prösch U et al. (2010) Decreased neuronal activity in reward circuitry of pathological gamblers during processing of personal relevant stimuli. Hum Brain Mapp 31: 1802–1812. doi:10.1002/hbm.20981PubMedGoogle Scholar
  12. De Ruiter MB, Veltman DJ, Goudriaan AE et al. (2009) Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology 34: 1027–1038. doi:10.1038/npp.2008.175PubMedCrossRefGoogle Scholar
  13. Dymond S, Lawrence NS, Dunkley BT et al. (2014) Almost winning: induced MEG theta power in insula and orbitofrontal cortex increases during gambling near-misses and is associated with BOLD signal and gambling severity. Neuroimage. doi:10.1016/j.neuroimage.2014.01.019Google Scholar
  14. Goldstein L, Carlton P (1988) Hemispheric EEG correlates of compulsive behavior: The case of pathological gamblers. Res Commun Psychol Psychiatr Behav 13: 103–111Google Scholar
  15. Goldstein L, Manowitz P, Nora R et al. (1985) Differential EEG activation and pathological gambling. Biol Psychiatry 20: 1232–1234PubMedCrossRefGoogle Scholar
  16. Goudriaan AE, de Ruiter MB, van den Brink W et al. (2010) Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addict Biol 15: 491–503. doi:10.1111/j.1369-1600.2010.00242.xPubMedCentralPubMedCrossRefGoogle Scholar
  17. Gyollai A, Griffiths M, Barta C et al. (2014) The genetics of problem and pathological gambling: a systematic review. Curr Pharm Des 20 (25): 3993–3999PubMedCrossRefGoogle Scholar
  18. Heinz A, Beck A, Grüsser SM et al. (2009) Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addict Biol 14: 108–118. doi:101111/j.1369-1600.2008.00136.xPubMedCentralPubMedCrossRefGoogle Scholar
  19. Hewig J, Kretschmer N, Trippe RH et al. (2010) Hypersensitivity to reward in problem gamblers. Biol Psychiatry 67: 781–783. doi:10.1016/j.biopsych.2009.11.009PubMedCrossRefGoogle Scholar
  20. Hollander E, Pallanti S, Baldini Rossi N et al. (2005) Imaging monetary reward in pathological gamblers. World J Biol Psychiatry 6: 113–120PubMedCrossRefGoogle Scholar
  21. Joutsa J, Johansson J, Niemelä S et al. (2012) Mesolimbic dopamine release is linked to symptom severity in pathological gambling. Neuroimage 60: 1992–1999. doi:10.1016/j.neuroimage.2012.02.006PubMedCrossRefGoogle Scholar
  22. Joutsa J, Saunavaara J, Parkkola R et al. (2011) Extensive abnormality of brain white matter integrity in pathological gambling. Psychiatry Res 194: 340–346 doi:10.1016/j.pscychresns.2011.08.001PubMedCrossRefGoogle Scholar
  23. Knutson B, Fong G, Adams C et al. (2001) Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12: 3683–3687PubMedCrossRefGoogle Scholar
  24. Koehler S, Hasselmann E, Wüstenberg T et al. (2013a) Higher volume of ventral striatum and right prefrontal cortex in pathological gambling. Brain Struct Funct. doi:10.1007/s00429-013-0668-6Google Scholar
  25. Koehler S, Ovadia-Caro S, van der Meer E et al. (2013b) Increased Functional Connectivity between Prefrontal Cortex and Reward System in Pathological Gambling. PLoS One 8, e84565. doi:10.1371/journal.pone.0084565PubMedCentralPubMedCrossRefGoogle Scholar
  26. Leeman R, Potenza M (2013) A targeted review of the neurobiology and genetics of behavioural addictions: an emerging area of research. Can J Psychiatry 58: 260–273PubMedCentralPubMedGoogle Scholar
  27. Limbrick-Oldfield EH, van Holst RJ, Clark L (2013) Fronto-striatal dysregulation in drug addiction and pathological gambling: Consistent inconsistencies? NeuroImage Clin 2: 385–393. doi:10.1016/j.nicl.2013.02.005PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lin SAEN, Lyons MJ, Scherrer JF et al. (1998) Familial influences on gambling behavior: an analysis of 3359 twin pairs. Addiction 93: 1375–1384. doi:10.1046/j.1360-0443.1998.93913758.xPubMedCrossRefGoogle Scholar
  29. Lind PA, Zhu G, Montgomery GW et al. (2013) Genome-wide association study of a quantitative disordered gambling trait. Addict Biol 18: 511–522. doi:10.1111/j.1369-1600.2012.00463.xPubMedCentralPubMedCrossRefGoogle Scholar
  30. Linnet J, Mouridsen K, Peterson E et al. (2012) Striatal dopamine release codes uncertainty in pathological gambling. Psychiatry Res 204: 55–60. doi:10.1016/j.pscychresns.2012.04.012PubMedCrossRefGoogle Scholar
  31. Lobo D, Kennedy J (2006) The genetics of gambling and behavioral addictions. CNS Spectr 11: 931–939PubMedGoogle Scholar
  32. Mann K, Fauth-Bühler M, Seiferth N, Heinz A (2013) The concept of behavioral addiction and limits of the term addiction. Nervenarzt 84: 548–556. doi:10.1007/s00115-012-3718-zPubMedCrossRefGoogle Scholar
  33. Miedl SF, Fehr T, Meyer G, Herrmann M (2010) Neurobiological correlates of problem gambling in a quasi-realistic blackjack scenario as revealed by fMRI. Psychiatry Res Neuroimaging 181: 165–173CrossRefGoogle Scholar
  34. Miedl SF, Peters J, Büchel C (2012) Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry 69: 177–186. doi:10.1001/archgenpsychiatry.2011.1552PubMedCrossRefGoogle Scholar
  35. Mörsen C, Heinz A, Fauth-Bühler M, Mann K (2011) Glücksspiel im Gehirn: neurobiologische Gundlagen pathologischen Glückspielens. Sucht 57: 259–273CrossRefGoogle Scholar
  36. Oberg SAK, Christie GJ, Tata MS (2011) Problem gamblers exhibit reward hypersensitivity in medial frontal cortex during gambling. Neuropsychologia 49: 3768–3775. doi:10.1016/j.neuropsychologia.2011.09.037PubMedCrossRefGoogle Scholar
  37. Potenza M (2003) An fMRI Stroop Task Study of Ventromedial Prefrontal Cortical Function in Pathological Gamblers. Am J Psychiatry 160: 1990–1994. doi:10.1176/appi.ajp.160.11.1990CrossRefGoogle Scholar
  38. Potenza MN (2008) Review. The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philos Trans R Soc Lond B Biol Sci 363: 3181–3189. doi:10.1098/rstb.2008.0100PubMedCentralPubMedCrossRefGoogle Scholar
  39. Potenza MN, Steinberg MA, Skudlarski P et al. (2003) Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Arch Gen Psychiatry 60: 828–836. doi:10.1001/archpsyc.60.8.828PubMedCrossRefGoogle Scholar
  40. Rahman AS, Xu J, Potenza MN (2014) Hippocampal and amygdalar volumetric differences in pathological gambling: a preliminary study of the associations with the behavioral inhibition system. Neuropsychopharmacology 39: 738–745. doi:10.1038/npp.2013.260PubMedCrossRefGoogle Scholar
  41. Regard M, Knoch D, Gütling E, Landis T (2003) Brain damage and addictive behavior: a neuropsychological and electroencephalogram investigation with pathologic gamblers. Cogn Behav Neurol 16: 47–53PubMedCrossRefGoogle Scholar
  42. Reuter J, Raedler T, Rose M et al. (2005) Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci 8: 147–148. doi:10.1038/nn1378PubMedCrossRefGoogle Scholar
  43. Romanczuk-Seiferth N, Koehler S, Dreesen C et al. (2014) Pathological gambling and alcohol dependence: neural disturbances in reward and loss avoidance processing. Addict Biol. doi:10.1111/adb.12144Google Scholar
  44. Shemchuk N, Berezina I, Oshevskiĭ D (2008) Assessment of the brain functional state in pathological gamblers with a complex of neurophysiological methods. Zhurnal Nevrol i psikhiatrii Im SS Korsakova 108: 43–47Google Scholar
  45. Stojanov W, Karayanidis F, Johnston P et al. (2003) Disrupted sensory gating in pathological gambling. Biol Psychiatry 54: 474–484. doi:10.1016/S0006-3223(02)01745-6PubMedCrossRefGoogle Scholar
  46. Stroop J (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18: 643–662CrossRefGoogle Scholar
  47. Tanabe J, Thompson L, Claus E et al. (2007) Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-making. Hum Brain Mapp 28: 1276–1286. doi:10.1002/hbm.20344PubMedCrossRefGoogle Scholar
  48. Tschernegg M, Crone JS, Eigenberger T et al. (2013) Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach. Front Hum Neurosci 7: 625. doi:10.3389/fnhum.2013.00625PubMedCentralPubMedCrossRefGoogle Scholar
  49. Van Holst RJ, van den Brink W, Veltman DJ, Goudriaan AE (2010) Brain imaging studies in pathological gambling. Curr Psychiatry Rep 12: 418–425. doi:10.1007/s11920-010-0141-7PubMedCentralPubMedCrossRefGoogle Scholar
  50. Van Holst RJ, de Ruiter MB, van den Brink W et (2012a) A voxel-based morphometry study comparing problem gamblers, alcohol abusers, and healthy controls. Drug Alcohol Depend 124: 142–148. doi:10.1016/j.drugalcdep.2011.12.025Google Scholar
  51. Van Holst RJ, van der Meer JN, McLaren DG, et al. (2012b) Interactions between affective and cognitive processing systems in problematic gamblers: a functional connectivity study. PLoS One 7, e49923. doi:10.1371/journal.pone.0049923PubMedCentralPubMedCrossRefGoogle Scholar
  52. Van Holst RJ, van Holstein M, van den Brink W et (2012c) Response inhibition during cue reactivity in problem gamblers: an fMRI study. PLoS One 7, e30909. doi:10.1371/journal.pone.0030909Google Scholar
  53. Wöfling K, Bühler M, Leménager T, Mörsen C, Mann K (2009) Glücksspiel- und Internetsucht: Review und Forschungsagenda. Nervenarzt 80: 1030–1039CrossRefGoogle Scholar
  54. Wölfling K, Mörsen CP, Duven E et al. (2011) To gamble or not to gamble: at risk for craving and relapse–learned motivated attention in pathological gambling. Biol Psychol 87: 275–281. doi:10.1016/j.biopsycho.2011.03.010PubMedCrossRefGoogle Scholar
  55. Wrase J, Schlagenhauf F, Kienast T et al. (2007) Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. Neuroimage 35: 787–794PubMedCrossRefGoogle Scholar
  56. Xian H, Scherrer J, Slutske W et al. (2007) Genetic and environmental contributions to pathological gambling symptoms in a 10-year follow-up. Twin Res Hum Genet 10: 174–179PubMedCrossRefGoogle Scholar
  57. Yip SW, Lacadie C, Xu J et al. (2013) Reduced genual corpus callosal white matter integrity in pathological gambling and its relationship to alcohol abuse or dependence. World J Biol Psychiatry 14: 129–138. doi:10.3109/15622975.2011.568068PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Zentralinstitut für Seelische Gesundheit (ZI)Klinik für Abhängiges Verhalten und SuchtmedizinMannheimDeutschland
  2. 2.Klinik für Psychiatrie und Psychotherapie, CCM AG Emotional NeuroscienceCharité – Universitätsmedizin BerlinBerlinDeutschland
  3. 3.Klinik für Psychiatrie und Psychotherapie, CCMCharité – Universitätsmedizin BerlinBerlinDeutschland
  4. 4.Medizinische Fakultät Mannheim derUniversität HeidelbergHeidelbergDeutschland

Personalised recommendations