Deterministic Public-Key Encryption for Adaptively Chosen Plaintext Distributions

  • Ananth Raghunathan
  • Gil Segev
  • Salil Vadhan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7881)

Abstract

Bellare, Boldyreva, and O’Neill (CRYPTO ’07) initiated the study of deterministic public-key encryption as an alternative in scenarios where randomized encryption has inherent drawbacks. The resulting line of research has so far guaranteed security only for adversarially-chosen plaintext distributions that are independent of the public key used by the scheme. In most scenarios, however, it is typically not realistic to assume that adversaries do not take the public key into account when attacking a scheme.

We show that it is possible to guarantee meaningful security even for plaintext distributions that depend on the public key. We extend the previously proposed notions of security, allowing adversaries to adaptively choose plaintext distributions after seeing the public key, in an interactive manner. The only restrictions we make are that: (1) plaintext distributions are unpredictable (as is essential in deterministic public-key encryption), and (2) the number of plaintext distributions from which each adversary is allowed to adaptively choose is upper bounded by 2 p , where p can be any predetermined polynomial in the security parameter. For example, with p = 0 we capture plaintext distributions that are independent of the public key, and with p = O(s logs) we capture, in particular, all plaintext distributions that are samplable by circuits of size s.

Within our framework we present both constructions in the random-oracle model based on any public-key encryption scheme, and constructions in the standard model based on lossy trapdoor functions (thus, based on a variety of number-theoretic assumptions). Previously known constructions heavily relied on the independence between the plaintext distributions and the public key for the purposes of randomness extraction. In our setting, however, randomness extraction becomes significantly more challenging once the plaintext distributions and the public key are no longer independent. Our approach is inspired by research on randomness extraction from seed-dependent distributions. Underlying our approach is a new generalization of a method for such randomness extraction, originally introduced by Trevisan and Vadhan (FOCS ’00) and Dodis (PhD Thesis, MIT, ’00).

References

  1. 1.
    Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek, S.: Hedged public-key encryption: How to protect against bad randomness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption: Definitional equivalences and constructions without random oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryption, and efficient constructions without random oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption: The auxiliary-input setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 543–560. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Dodis, Y.: Exposure-Resilient Cryptography. PhD thesis, MIT (2000)Google Scholar
  10. 10.
    Dodis, Y., Smith, A.: Correcting errors without leaking partial information. In: STOC, pp. 654–663 (2005)Google Scholar
  11. 11.
    Dodis, Y., Smith, A.: Entropic security and the encryption of high entropy messages. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 556–577. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Freeman, D., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions of lossy and correlation-secure trapdoor functions. J. Cryptology 26(1), 39–74 (2013)MATHCrossRefGoogle Scholar
  13. 13.
    Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption: New constructions and a connection to computational entropy. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Kaplan, E., Naor, M., Reingold, O.: Derandomized constructions of k-wise (almost) independent permutations. Algorithmica 55(1), 113–133 (2009)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosen-plaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Mironov, I., Pandey, O., Reingold, O., Segev, G.: Incremental deterministic public-key encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 628–644. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM Journal on Computing 40(6), 1803–1844 (2011)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Raghunathan, A., Segev, G., Vadhan, S.: Deterministic public-key encryption for adaptively chosen plaintext distributions. Cryptology ePrint Archive, Report 2013/125 (2013)Google Scholar
  20. 20.
    Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. IEEE Transactions on Information Theory 52(3), 1130–1140 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Trevisan, L., Vadhan, S.P.: Extracting randomness from samplable distributions. In: Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science, pp. 32–42 (2000)Google Scholar
  22. 22.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Wee, H.: Dual projective hashing and its applications — lossy trapdoor functions and more. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 246–262. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In: Proceedings of the 4th ITCS (2013)Google Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Ananth Raghunathan
    • 1
  • Gil Segev
    • 1
  • Salil Vadhan
    • 2
  1. 1.Computer Science DepartmentStanford UniversityStanfordUSA
  2. 2.School of Engineering and Applied Sciences & Center for Research on Computation and SocietyHarvard UniversityCambridgeUSA

Personalised recommendations