Advertisement

One-Sided Device-Independent QKD and Position-Based Cryptography from Monogamy Games

  • Marco Tomamichel
  • Serge Fehr
  • Jędrzej Kaniewski
  • Stephanie Wehner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7881)

Abstract

A serious concern with quantum key distribution (QKD) schemes is that, when under attack, the quantum devices in a real-life implementation may behave differently than modeled in the security proof. This can lead to real-life attacks against provably secure QKD schemes.

In this work, we show that the standard BB84 QKD scheme is one-sided device-independent. This means that security holds even if Bob’s quantum device is arbitrarily malicious, as long as Alice’s device behaves as it should. Thus, we can completely remove the trust into Bob’s quantum device for free, without the need for changing the scheme, and without the need for hard-to-implement loophole-free violations of Bell inequality, as is required for fully (meaning two-sided) device-independent QKD.

For our analysis, we introduce a new quantum game, called a monogamy-of-entanglement game, and we show a strong parallel repetition theorem for this game. This new notion is likely to be of independent interest and to find additional applications. Indeed, besides the application to QKD, we also show a direct application to position-based quantum cryptography: we give the first security proof for a one-round position-verification scheme that requires only single-qubit operations.

Keywords

Quantum Cryptography Bell Inequality Security Proof Quantum Game Parallel Repetition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-Independent Security of Quantum Cryptography against Collective Attacks. Phys. Rev. Lett. 98(23) (2007)Google Scholar
  2. 2.
    Barrett, J., Hardy, L., Kent, A.: No Signaling and Quantum Key Distribution. Phys. Rev. Lett. 95(1) (June 2005)Google Scholar
  3. 3.
    Beigi, S., König, R.: Simplified Instantaneous Non-Local Quantum Computation with Applications to Position-Based Cryptography. New J. Phys. 13(9), 093036 (2011)Google Scholar
  4. 4.
    Bennett, C.H., Brassard, G., Mermin, N.: Quantum Cryptography Without Bell’s Theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing. In: Proc. IEEE Int. Conf. on Comp., Sys. and Signal Process., Bangalore, pp. 175–179. IEEE (1984)Google Scholar
  6. 6.
    Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering. Phys. Rev. A 85(1), 010301 (2012)Google Scholar
  7. 7.
    Braunstein, S., Pirandola, S.: Side-Channel-Free Quantum Key Distribution. Phys. Rev. Lett. 108(13), 130502 (2012)CrossRefGoogle Scholar
  8. 8.
    Buhrman, H., Chandran, N., Fehr, S., Gelles, R., Goyal, V., Ostrovsky, R., Schaffner, C.: Position-Based Quantum Cryptography: Impossibility and Constructions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 429–446. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position Based Cryptography. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Einstein, A., Podolsky, B., Rosen, N.: Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 47(10), 777–780 (1935)zbMATHCrossRefGoogle Scholar
  11. 11.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gisin, N., Pironio, S., Sangouard, N.: Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier. Phys. Rev. Lett. 105(7) (August 2010)Google Scholar
  13. 13.
    Hänggi, E., Renner, R.: Device-Independent Quantum Key Distribution with Commuting Measurements (September 2010), http://arxiv.org/abs/1009.1833
  14. 14.
    Hastings, M.: A Counterexample to Additivity of Minimum Output Entropy. Nature Physics 5, 255 (2009)CrossRefGoogle Scholar
  15. 15.
    Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43(3-4), 172–198 (1927)zbMATHCrossRefGoogle Scholar
  16. 16.
    Kempe, J., Vidick, T.: Parallel Repetition of Entangled Games. In: 43rd STOC, pp. 353–362. ACM (2011)Google Scholar
  17. 17.
    Kent, A., Munro, W.J., Spiller, T.P.: Quantum Tagging: Authenticating Location via Quantum Information and Relativistic Signalling Constraints (August 2010), http://arxiv.org/abs/1008.2147
  18. 18.
    Kittaneh, F.: Norm Inequalities for Certain Operator Sums. Journal of Functional Analysis 143(2), 337–348 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Klauck, H.: A Strong Direct Product Theorem for Disjointness. In: 42nd STOC, pp. 77–86. ACM (2010)Google Scholar
  20. 20.
    König, R., Renner, R., Schaffner, C.: The Operational Meaning of Min- and Max-Entropy. IEEE Trans. on Inf. Theory 55(9), 4337–4347 (2009)CrossRefGoogle Scholar
  21. 21.
    Krishna, M., Parthasarathy, K.R.: An Entropic Uncertainty Principle for Quantum Measurements. Indian J. Stat. 64(3), 842–851 (2002)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Lau, H.-K., Lo, H.-K.: Insecurity of Position-based Quantum-Cryptography Protocols Against Entanglement Attacks. Phys. Rev. A 83(1), 1–12 (2011)CrossRefGoogle Scholar
  23. 23.
    Lim, C.C.W., Portmann, C., Tomamichel, M., Renner, R., Gisin, N.: Device-Independent Quantum Key Distribution with Local Bell Test (July 2012), http://arxiv.org/abs/1208.0023
  24. 24.
    Lo, H.-K., Curty, M., Qi, B.: Measurement-Device-Independent Quantum Key Distribution. Phys. Rev. Lett. 108(13), 130503 (2012)CrossRefGoogle Scholar
  25. 25.
    Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking Commercial Quantum Cryptography Systems by Tailored Bright Illumination. Nat. Photon. 4(10), 686–689 (2010)CrossRefGoogle Scholar
  26. 26.
    Masanes, L., Pironio, S., Acín, A.: Secure Device-independent Quantum Key Distribution With Causally Independent Measurement Devices. Nat. Commun. 2, 238 (2011)CrossRefGoogle Scholar
  27. 27.
    Mayers, D.: Quantum Key Distribution and String Oblivious Transfer in Noisy Channels. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 343–357. Springer, Heidelberg (1996)Google Scholar
  28. 28.
    Mayers, D., Yao, A.: Quantum Cryptography with Imperfect Apparatus. In: 39th FOCS, pp. 503–509. IEEE Computer Society (1998)Google Scholar
  29. 29.
    Raz, R.: A Parallel Repetition Theorem. SIAM Journal on Computing 27, 763–803 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Reichardt, B.W., Unger, F., Vazirani, U.: Classical Command of Quantum Systems via Rigidity of CHSH Games (September 2012), http://arxiv.org/abs/1209.0449
  31. 31.
    Renner, R.: Security of Quantum Key Distribution. PhD thesis, ETH Zurich (December 2005), http://arxiv.org/abs/quant-ph/0512258
  32. 32.
    Schaffner, C.: Cryptography in the Bounded-Quantum-Storage Model. PhD thesis, University of Aarhus (September 2007), http://arxiv.org/abs/0709.0289
  33. 33.
    Shor, P., Preskill, J.: Simple Proof of Security of the BB84 Quantum Key Distribution Protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)CrossRefGoogle Scholar
  34. 34.
    Terhal, B.: Is Entanglement Monogamous? IBM J. Reasearch and Development 48(1), 71–78 (2004)CrossRefGoogle Scholar
  35. 35.
    Tomamichel, M.: A Framework for Non-Asymptotic Quantum Information Theory. PhD thesis, ETH Zurich (March 2012), http://arxiv.org/abs/1203.2142
  36. 36.
    Tomamichel, M., Fehr, S., Kaniewski, J., Wehner, S.: Strong Parallel Repetition for a Monogamy-of-Entanglement Game (October 2012), http://arxiv.org/abs/1210.4359
  37. 37.
    Tomamichel, M., Hayashi, M.: A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks (August 2012), http://arxiv.org/abs/1208.1478
  38. 38.
    Tomamichel, M., Renner, R.: Uncertainty Relation for Smooth Entropies. Phys. Rev. Lett. 106(11) (March 2011)Google Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Marco Tomamichel
    • 1
  • Serge Fehr
    • 2
  • Jędrzej Kaniewski
    • 1
  • Stephanie Wehner
    • 1
  1. 1.Centre for Quantum TechnologiesNational University of SingaporeSingapore
  2. 2.CWI AmsterdamThe Netherlands

Personalised recommendations