Advertisement

MiniLEGO: Efficient Secure Two-Party Computation from General Assumptions

  • Tore Kasper Frederiksen
  • Thomas Pelle Jakobsen
  • Jesper Buus Nielsen
  • Peter Sebastian Nordholt
  • Claudio Orlandi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7881)

Abstract

One of the main tools to construct secure two-party computation protocols are Yao garbled circuits. Using the cut-and-choose technique, one can get reasonably efficient Yao-based protocols with security against malicious adversaries. At TCC 2009, Nielsen and Orlandi [28] suggested to apply cut-and-choose at the gate level, while previously cut-and-choose was applied on the circuit as a whole. This idea allows for a speed up with practical significance (in the order of the logarithm of the size of the circuit) and has become known as the “LEGO” construction. Unfortunately the construction in [28] is based on a specific number-theoretic assumption and requires public-key operations per gate of the circuit. The main technical contribution of this work is a new XOR-homomorphic commitment scheme based on oblivious transfer, that we use to cope with the problem of connecting the gates in the LEGO construction. Our new protocol has the following advantages:

  1. 1

    It maintains the efficiency of the LEGO cut-and-choose.

     
  2. 2

    After a number of seed oblivious transfers linear in the security parameter, the construction uses only primitives from Minicrypt (i.e., private-key cryptography) per gate in the circuit (hence the name MiniLEGO).

     
  3. 3

    MiniLEGO is compatible with all known optimization for Yao garbled gates (row reduction, free-XORs, point-and-permute).

     

Keywords

Security Parameter Ideal Functionality Commitment Scheme Oblivious Transfer Cryptology ePrint Archive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: ACM Conference on Computer and Communications Security, pp. 784–796 (2012)Google Scholar
  2. 2.
    Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party computation. In: ACM Conference on Computer and Communications Security, pp. 257–266 (2008)Google Scholar
  3. 3.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503 (2002)Google Scholar
  4. 4.
    Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 521–536. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Damgård, I., Keller, M., Larraia, E., Miles, C., Smart, N.P.: Implementing AES via an actively/covertly secure dishonest-majority MPC protocol. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 241–263. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Frederiksen, T., Jakobsen, T.P., Jesper Buus Nielsen, P.S.N., Orlandi, C.: Minilego: Efficient secure two-party computation from general assumptions (full version). Cryptology ePrint Archive, Report (2013), http://eprint.iacr.org/
  7. 7.
    Frederiksen, T.K., Nielsen, J.B.: Fast and maliciously secure two-party computation using the gpu. Cryptology ePrint Archive, Report 2013/046 (2013), http://eprint.iacr.org/
  8. 8.
    Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge University Press (2004)Google Scholar
  9. 9.
    Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via secure computation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 393–411. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols: Techniques and Constructions. Springer (2010)Google Scholar
  11. 11.
    Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY: tool for automating secure two-party computations. In: ACM Conference on Computer and Communications Security, pp. 451–462 (2010)Google Scholar
  12. 12.
    Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: USENIX Security Symposium (2011)Google Scholar
  13. 13.
    Huang, Y., Katz, J., Evans, D.: Quid-pro-quo-tocols: Strengthening semi-honest protocols with dual execution. In: IEEE Symposium on Security and Privacy, pp. 272–284 (2012)Google Scholar
  14. 14.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant computational overhead. In: STOC, pp. 433–442 (2008)Google Scholar
  16. 16.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Kreuter, B., Shelat, A., Shen, C.: Billion-gate secure computation with malicious adversaries. USENIX Security. Available at Cryptology ePrint Archive, Report 2012/179 (2012), http://eprint.iacr.org/
  19. 19.
    Lindell, Y., Oxman, E., Pinkas, B.: The IPS compiler: Optimizations, variants and concrete efficiency. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 259–276. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptology 22(2), 161–188 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation efficiently with security against malicious adversaries. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system. In: USENIX Security Symposium, pp. 287–302 (2004)Google Scholar
  25. 25.
    Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: ACM Conference on Electronic Commerce, pp. 129–139 (1999)Google Scholar
  27. 27.
    Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the conditional gate. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 119–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    shelat, A., Shen, C.-H.: Two-output secure computation with malicious adversaries. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Tore Kasper Frederiksen
    • 1
  • Thomas Pelle Jakobsen
    • 1
  • Jesper Buus Nielsen
    • 1
  • Peter Sebastian Nordholt
    • 1
  • Claudio Orlandi
    • 1
  1. 1.Department of Computer ScienceAarhus UniversityDenmark

Personalised recommendations