Limitations of the Meta-reduction Technique: The Case of Schnorr Signatures

  • Marc Fischlin
  • Nils Fleischhacker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7881)

Abstract

We revisit the security of Fiat-Shamir signatures in the non-programmable random oracle model. The well-known proof by Pointcheval and Stern for such signature schemes (Journal of Cryptology, 2000) relies on the ability to re-program the random oracle, and it has been unknown if this property is inherent. Pailler and Vergnaud (Asiacrypt 2005) gave some first evidence of the hardness by showing via meta-reduction techniques that algebraic reductions cannot succeed in reducing key-only attacks against unforgeability to the discrete-log assumptions. We also use meta-reductions to show that the security of Schnorr signatures cannot be proven equivalent to the discrete logarithm problem without programming the random oracle. Our result also holds under the one-more discrete logarithm assumption but applies to a large class of reductions, we call single-instance reductions, subsuming those used in previous proofs of security in the (programmable) random oracle model. In contrast to algebraic reductions, our class allows arbitrary operations, but can only invoke a single resettable adversary instance, making our class incomparable to algebraic reductions.

Our main result, however, is about meta-reductions and the question if this technique can be used to further strengthen the separations above. Our answer is negative. We present, to the best of our knowledge for the first time, limitations of the meta-reduction technique in the sense that finding a meta-reduction for general reductions is most likely infeasible. In fact, we prove that finding a meta-reduction against a potential reduction is equivalent to finding a “meta-meta-reduction” against the strong existential unforgeability of the signature scheme. This means that the existence of a meta-reduction implies that the scheme must be insecure (against a slightly stronger attack) in the first place.

References

  1. 1.
    Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to signatures via the Fiat-Shamir transform: Minimizing assumptions for security and forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 418–433. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited. IACR Cryptology ePrint Archive (2013)Google Scholar
  4. 4.
    Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature schemes. IACR Cryptology ePrint Archive (2012)Google Scholar
  5. 5.
    Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology 16(3), 185–215 (2003)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993: 1st Conference on Computer and Communications Security, Fairfax, Virginia, USA, November 3-5, pp. 62–73. ACM Press (1993)Google Scholar
  7. 7.
    Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Bresson, E., Monnerat, J., Vergnaud, D.: Separation results on the “one-more” computational problems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 71–87. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  11. 11.
    Fischlin, M.: Black-box reductions and separations in cryptography. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 413–422. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Fischlin, M., Fischlin, R.: The representation problem based on factoring. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 96–113. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.: Random oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 93–107. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd Annual ACM Symposium on Theory of Computing, San Jose, California, USA, June 6-8, pp. 99–108. ACM Press (2011)Google Scholar
  17. 17.
    Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  18. 18.
    Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  20. 20.
    Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Pass, R.: Limits of provable security from standard assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd Annual ACM Symposium on Theory of Computing, San Jose, California, USA, June 6-8, pp. 109–118. ACM Press (2011)Google Scholar
  22. 22.
    Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  23. 23.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)MATHCrossRefGoogle Scholar
  24. 24.
    Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
  26. 26.
    Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Seurin, Y.: On the exact security of schnorr-type signatures in the random oracle model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 554–571. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Marc Fischlin
    • 1
  • Nils Fleischhacker
    • 2
  1. 1.Technische Universität DarmstadtGermany
  2. 2.Saarland UniversityGermany

Personalised recommendations