EUROCRYPT 2013: Advances in Cryptology – EUROCRYPT 2013 pp 177-193

Faster Index Calculus for the Medium Prime Case Application to 1175-bit and 1425-bit Finite Fields

• Antoine Joux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7881)

Abstract

Many index calculus algorithms generate multiplicative relations between smoothness basis elements by using a process called Sieving. This process allows us to quickly filter potential candidate relations, without spending too much time to consider bad candidates. However, from an asymptotic point of view, there is not much difference between sieving and straightforward testing of candidates. The reason is that even when sieving, some small amount of time is spent for each bad candidate. Thus, asymptotically, the total number of candidates contributes to the complexity.

In this paper, we introduce a new technique: Pinpointing, which allows us to construct multiplicative relations much faster, thus reducing the asymptotic complexity of relations’ construction. Unfortunately, we only know how to implement this technique for finite fields which contain a medium-sized subfield. When applicable, this method improves the asymptotic complexity of the index calculus algorithm in the cases where the sieving phase dominates. In practice, it gives a very interesting boost to the performance of state-of-the-art algorithms. We illustrate the feasability of the method with discrete logarithm records in two medium prime finite fields, the first of size 1175 bits and the second of size 1425 bits.

References

1. 1.
Adleman, L.M., Huang, M.-D.A.: Function field sieve method for discrete logarithms over finite fields. In: Information and Computation, vol. 151, pp. 5–16. Academic Press (1999)Google Scholar
2. 2.
Coppersmith, D.: Fast evaluation of logarithms in fields of characteristic two. IEEE Transactions on Information Theory IT-30(4), 587–594 (1984)Google Scholar
3. 3.
Coppersmith, D., Odlyzko, A.M., Schroeppel, R.: Discrete logarithms in GF(p). Algorithmica 1(1), 1–15 (1986)
4. 4.
Couveignes, J.-M., Lercier, R.: Galois invariant smoothness basis. In: Hirschfeld, J., Chaumine, J., Rolland, R. (eds.) Algebraic Geometry and its Applications, Proceedings of the First SAGA Conference, May 7-11. Number Theory and Its Applications, vol. 5, pp. 142–167. World Scientific, Papeete (2007)Google Scholar
5. 5.
Das, A., Veni Madhavan, C.E.: On the cubic sieve method for computing discrete logarithms over prime fields. Int. J. Comput. Math. 82(12), 1481–1495 (2005)
6. 6.
Diem, C.: The GHS attack in odd characteristic. J. Ramanujan Math. Soc. 18(1), 1–32 (2003)
7. 7.
Gaudry, P.: An algorithm for solving the discrete log problem on hyperelliptic curves. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 19–34. Springer, Heidelberg (2000)
8. 8.
Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem. J. Symbolic Computation (2008)Google Scholar
9. 9.
Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil descent on elliptic curves. J. Cryptology 15(1), 19–46 (2002)
10. 10.
Gaudry, P., Thomé, E., Thériault, N., Diem, C.: A double large prime variation for small genus hyperelliptic index calculus. Mathematics of Computation 76, 475–492 (2007)
11. 11.
Gordon, D.M.: Discrete logarithms in GF(p) using the number field sieve. SIAM J. Discrete Math. 6(1), 124–138 (1993)
12. 12.
Hart, W.: Re: Discrete logarithms in a 1175-bit finite field. NMBRTHRY list (January 2013)Google Scholar
13. 13.
Hayashi, T., Shimoyama, T., Shinohara, N., Takagi, T.: Breaking pairing-based cryptosystems using η T pairing over gF(397). In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 43–60. Springer, Heidelberg (2012)
14. 14.
Joux, A.: Discrete logarithms in a 1175-bit finite field. NMBRTHRY list (December 2012)Google Scholar
15. 15.
Joux, A.: Faster index calculus for the medium prime case. Application to 1175-bit and 1425-bit finite fields. Cryptology ePrint Archive, Report 2012/720 (2012)Google Scholar
16. 16.
Joux, A.: Discrete logarithms in a 1425-bit finite field. NMBRTHRY list (January 2013)Google Scholar
17. 17.
Joux, A., Lercier, R.: Discrete logarithms in GF(370 80130). NMBRTHRY list (November 2005)Google Scholar
18. 18.
Joux, A., Lercier, R.: The function field sieve in the medium prime case. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer, Heidelberg (2006)
19. 19.
Arjen, K., Lenstra Jr., H.W. (eds.): The development of the number field sieve. Lecture Notes in Mathematics, vol. 1554. Springer, Heidelberg (1993)Google Scholar
20. 20.
Murphy, B.A.: Polynomial selection for the number field sieve integer factorisation algorithm. PhD thesis, Australian national university (1999)Google Scholar
21. 21.
Panario, D., Gourdon, X., Flajolet, P.: An Analytic Approach to Smooth Polynomials over Finite Fields. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 226–236. Springer, Heidelberg (1998)
22. 22.
Thomé, E.: Subquadratic computation of vector generating polynomials and improvement of the block wiedemann algorithm. J. Symb. Comput. 33(5), 757–775 (2002)