Candidate Multilinear Maps from Ideal Lattices

  • Sanjam Garg
  • Craig Gentry
  • Shai Halevi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7881)

Abstract

We describe plausible lattice-based constructions with properties that approximate the sought-after multilinear maps in hard-discrete-logarithm groups, and show an example application of such multi-linear maps that can be realized using our approximation. The security of our constructions relies on seemingly hard problems in ideal lattices, which can be viewed as extensions of the assumed hardness of the NTRU function.

References

  1. [AGHS12]
    Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Sampling discrete gaussians efficiently and obliviously. Cryptology ePrint Archive, Report 2012/714 (2012), http://eprint.iacr.org/
  2. [BF01]
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. [BL96]
    Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to cryptography (extended abstract). In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 283–297. Springer, Heidelberg (1996)Google Scholar
  4. [BS03]
    Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Contemporary Mathematics 324, 71–90 (2003)MathSciNetCrossRefGoogle Scholar
  5. [CS97]
    Coppersmith, D., Shamir, A.: Lattice attacks on ntru. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. [Gen01]
    Gentry, C.: Key recovery and message attacks on ntru-composite. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 182–194. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. [GGH97]
    Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. [GGH12]
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. Cryptology ePrint Archive, Report 2012/610 (2012), http://eprint.iacr.org/
  9. [GGH+13]
    Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. Cryptology ePrint Archive, Report 2013/128 (2013), http://eprint.iacr.org/
  10. [GGSW13]
    Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: STOC (2013)Google Scholar
  11. [GKP+13]
    Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Succinct functional encryption and applications: Reusable garbled circuits and beyond. In: STOC (2013)Google Scholar
  12. [GS02]
    Gentry, C., Szydlo, M.: Cryptanalysis of the revised ntru signature scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. [GVW13]
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits. In: STOC (2013)Google Scholar
  14. [HGS04]
    Howgrave-Graham, N., Szydlo, M.: A method to solve cyclotomic norm equations. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 272–279. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. [HHGP+03]
    Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: Ntrusign: Digital signatures using the ntru lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. [HKL+00]
    Hoffstein, J., Kaliski, B.S., Lieman, D.B., Robshaw, M.J.B., Yin, Y.L.: Secure user identification based on constrained polynomials. US Patent 6,076,163 (2000)Google Scholar
  17. [HPS98]
    Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. [HPS01]
    Hoffstein, J., Pipher, J., Silverman, J.H.: Nss: An ntru lattice-based signature scheme. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 211–228. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. [Jou00]
    Joux, A.: A one round protocol for tripartite diffie-hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. [MR07]
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Computing 37(1), 267–302 (2007)MathSciNetMATHCrossRefGoogle Scholar
  21. [NR06]
    Nguyên, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis of ggh and ntru signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 271–288. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. [PTT10]
    Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal authenticated data structures with multilinear forms. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 246–264. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. [Reg05]
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)Google Scholar
  24. [Rot13]
    Rothblum, R.D.: On the circular security of bit-encryption. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. [RS09]
    Rückert, M., Schröder, D.: Aggregate and verifiably encrypted signatures from multilinear maps without random oracles. In: Park, J.H., Chen, H.-H., Atiquzzaman, M., Lee, C., Kim, T.-h., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 750–759. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. [SOK00]
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS 2000, Okinawa, Japan (January 2000)Google Scholar
  27. [Szy03]
    Szydlo, M.: Hypercubic lattice reduction and analysis of ggh and ntru signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 433–448. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Sanjam Garg
    • 1
  • Craig Gentry
    • 2
  • Shai Halevi
    • 2
  1. 1.UCLAUSA
  2. 2.IBM ResearchUSA

Personalised recommendations