Advertisement

Noncoding RNA Genes Transcribed by RNA Polymerase III in Yarrowia lipolytica

  • Cécile NeuvégliseEmail author
  • Claude Gaillardin
  • Christian Marck
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 24)

Abstract

In the hemiascomycetous yeast Yarrowia lipolytica, the Pol III-transcribed ncRNAs display a number of unusual and remarkable features with respect to other Hemiascomycetes. With 510 bona fide genes, the genome of this organism contains the largest number of tRNA genes among yeasts. Unlike all other Hemiascomycetes which unconventionally decode the Leu CUN and Arg CGN codons like bacteria, Y. lipolytica follows the regular eukaryotic rule. Full genome sequencing of the first Hemiascomycetes revealed many cases of tandem tRNA genes. Such genes are present in Y. lipolytica, together with other unexpected cases of Pol III hybrid genes. In Y. lipolytica, contrary to most Hemiascomycetes and similarly to Schizosaccharomyces pombe, the 5S rRNA genes (transcribed by Pol III) are not embedded into the multiple rDNA units. Y. lipolytica appears unique with the presence of ~50 copies of hybrid dicistronic tRNA-5S rRNA genes coexisting with ~60 copies of more conventional, isolated 5S rRNA genes. These hybrid genes were shown experimentally to be actively co-transcribed in vitro and in vivo from the leader tRNA genes rendering the specific transcription factor of 5S rRNA genes, TFIIIA, dispensable. Y. lipolytica also contains a novel ncRNA, RUF70, expressed from multiple genes located 3′ to each of the 13 copies of the tRNA-Trp gene. Such a complex assembly of Pol III genes is not found outside the Yarrowia clade. Many Pol III-related features differentiate Y. lipolytica from other Hemiascomycetes, rendering it closer to Schizosaccharomyces pombe, to other ascomycetes, and to the rest of eukaryotes.

Keywords

tRNA Gene Yarrowia Lipolytica Signal Recognition Particle rDNA Unit Spliceosomal Intron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We wish to thank Joël Acker for helpful discussions, Carl Mann for correcting the manuscript, and all our colleagues from the Génolevures consortium. This work was supported by the GDR CNRS 2354 “Génolevures-3,” the ANR grant “Genarise” (ANR-05-BLAN-0331), and the ANR grant “RegPolStress” (ANR-07-BLAN-0039).

References

  1. Abe T, Ikemura T, Ohara Y, Uehara H, Kinouchi M, Kanaya S, Yamada Y, Muto A, Inokuchi H (2009) tRNADB-CE: tRNA gene database curated manually by experts. Nucleic Acids Res 37:D163–D168PubMedCrossRefGoogle Scholar
  2. Acker J, Ozanne C, Kachouri-Lafond R, Gaillardin C, Neuvéglise C, Marck C (2008) Dicistronic tRNA-5S rRNA genes in Yarrowia lipolytica: an alternative TFIIIA-independent way for expression of 5S rRNA genes. Nucleic Acids Res 36:5832–5844PubMedCrossRefGoogle Scholar
  3. Baker RE, Camier S, Sentenac A, Hall BD (1987) Gene size differentially affects the binding of yeast transcription factor τ to two intragenic regions. Proc Natl Acad Sci USA 84:8768–8772PubMedCrossRefGoogle Scholar
  4. Belfort M, Weiner A (1997) Another bridge between kingdoms: tRNA splicing in archaea and eukaryotes. Cell 89:1003–1006PubMedCrossRefGoogle Scholar
  5. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101PubMedCrossRefGoogle Scholar
  6. Braglia P, Percudani R, Dieci G (2005) Sequence context effects on oligo(dT) termination signal recognition by Saccharomyces cerevisiae RNA polymerase III. J Biol Chem 280:19551–19562PubMedCrossRefGoogle Scholar
  7. Brow DA, Guthrie C (1990) Transcription of a yeast U6 snRNA gene requires a polymerase III promoter element in a novel position. Genes Dev 4:1345–1356PubMedCrossRefGoogle Scholar
  8. Burnol A-F, Margottin F, Huet J, Almouzni G, Prioleau M-N, Mechali M, Sentenac A (1993) TFIIIC relieves repression of U6 snRNA transcription by chromatin. Nature 362:475–477PubMedCrossRefGoogle Scholar
  9. Camier S, Dechampesme AM, Sentenac A (1995) The only essential function of TFIIIA in yeast is the transcription of 5S rRNA genes. Proc Natl Acad Sci USA 92:9338–9342PubMedCrossRefGoogle Scholar
  10. Casaregola S, Neuvéglise C, Lepingle A, Bon E, Feynerol C, Artiguenave F, Wincker P, Gaillardin C (2000) Genomic exploration of the hemiascomycetous yeasts: 17. Yarrowia lipolytica. FEBS Lett 487:95–100PubMedCrossRefGoogle Scholar
  11. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedCrossRefGoogle Scholar
  12. Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37:D93–D97PubMedCrossRefGoogle Scholar
  13. Ciesla M, Towpik J, Graczyk D, Oficjalska-Pham D, Harismendy O, Suleau A, Balicki K, Conesa C, Lefebvre O, Boguta M (2007) Maf1 is involved in coupling carbon metabolism to RNA polymerase III transcription. Mol Cell Biol 27:7693–7702PubMedCrossRefGoogle Scholar
  14. Clare JJ, Davidow LS, Gardner DC, Oliver SG (1986) Cloning and characterisation of the ribosomal RNA genes of the dimorphic yeast, Yarrowia lipolytica. Curr Genet 10:449–452PubMedCrossRefGoogle Scholar
  15. Crick FH (1966) Codon–anticodon pairing: the wobble hypothesis. J Mol Biol 19:548–555PubMedCrossRefGoogle Scholar
  16. De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566PubMedCrossRefGoogle Scholar
  17. Dieci G, Sentenac A (1996) Facilitated recycling pathway for RNA polymerase III. Cell 84:245–252PubMedCrossRefGoogle Scholar
  18. Dieci G, Percudani R, Giuliodori S, Bottarelli L, Ottonello S (2000) TFIIIC-independent in vitro transcription of yeast tRNA genes. J Mol Biol 299:601–613PubMedCrossRefGoogle Scholar
  19. Dieci G, Giuliodori S, Catellani M, Percudani R, Ottonello S (2002) Intragenic promoter adaptation and facilitated RNA polymerase III recycling in the transcription of SCR1, the 7SL RNA gene of Saccharomyces cerevisiae. J Biol Chem 277:6903–6914PubMedCrossRefGoogle Scholar
  20. Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A (2007) The expanding RNA polymerase III transcriptome. Trends Genet 23:614–622PubMedCrossRefGoogle Scholar
  21. Donze D, Adams CR, Rine J, Kamakaka RT (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 13:698–708PubMedCrossRefGoogle Scholar
  22. Ducrot C, Lefebvre O, Landrieux E, Guirouilh-Barbat J, Sentenac A, Acker J (2006) Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors. J Biol Chem 281:11685–11692PubMedCrossRefGoogle Scholar
  23. Dujon B (2006) Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution. Trends Genet 22:375–387PubMedCrossRefGoogle Scholar
  24. Dujon B (2010) Yeast evolutionary genomics. Nat Rev Genet 11:512–524PubMedCrossRefGoogle Scholar
  25. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuvéglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430:35–44PubMedCrossRefGoogle Scholar
  26. Dumay-Odelot H, Marck C, Durrieu-Gaillard S, Lefebvre O, Jourdain S, Prochazkova M, Pflieger A, Teichmann M (2007) Identification, molecular cloning, and characterization of the sixth subunit of human transcription factor TFIIIC. J Biol Chem 282:17179–17189PubMedCrossRefGoogle Scholar
  27. Engelke DR, Gegenheimer P, Abelson J (1985) Nucleolytic processing of a tRNAArg-tRNAAsp dimeric precursor by a homologous component from Saccharomyces cerevisiae. J Biol Chem 260:1271–1279PubMedGoogle Scholar
  28. Englert M, Felis M, Junker V, Beier H (2004) Novel upstream and intragenic control elements for the RNA polymerase III-dependent transcription of human 7SL RNA genes. Biochimie 86:867–874PubMedCrossRefGoogle Scholar
  29. Esakova O, Krasilnikov AS (2010) Of proteins and RNA: the RNase P/MRP family. RNA 16:1725–1747PubMedCrossRefGoogle Scholar
  30. Ferrari R, Rivetti C, Acker J, Dieci G (2004) Distinct roles of transcription factors TFIIIB and TFIIIC in RNA polymerase III transcription reinitiation. Proc Natl Acad Sci USA 3:13442–13447CrossRefGoogle Scholar
  31. Geiduschek EP, Kassavetis GA (2001) The RNA polymerase III transcription apparatus. J Mol Biol 310:1–26PubMedCrossRefGoogle Scholar
  32. Ghavi-Helm Y, Michaut M, Acker J, Aude JC, Thuriaux P, Werner M, Soutourina J (2008) Genome-wide location analysis reveals a role of TFIIS in RNA polymerase III transcription. Genes Dev 22:1934–1947PubMedCrossRefGoogle Scholar
  33. Grosjean H, de Crecy-Lagard V, Marck C (2010) Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Lett 584:252–264PubMedCrossRefGoogle Scholar
  34. Guddat U, Bakken AH, Pieler T (1990) Protein-mediated nuclear export of RNA: 5S rRNA containing small RNPs in xenopus oocytes. Cell 60:619–628PubMedCrossRefGoogle Scholar
  35. Guffanti E, Percudani R, Harismendy O, Soutourina J, Werner M, Iacovella MG, Negri R, Dieci G (2006) Nucleosome depletion activates poised RNA polymerase III at unconventional transcription sites in Saccharomyces cerevisiae. J Biol Chem 281:29155–29164PubMedCrossRefGoogle Scholar
  36. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  37. Haldar D, Kamakaka RT (2006) tRNA genes as chromatin barriers. Nat Struct Mol Biol 13:192–193PubMedCrossRefGoogle Scholar
  38. Harismendy O, Gendrel CG, Soularue P, Gidrol X, Sentenac A, Werner M, Lefebvre O (2003) Genome-wide location of yeast RNA polymerase III transcription machinery. EMBO J 22:4738–4747PubMedCrossRefGoogle Scholar
  39. He F, Beckerich JM, Ribes V, Tollervey D, Gaillardin CM (1989) Two genes encode 7SL RNAs in the yeast Yarrowia lipolytica. Curr Genet 16:347–350PubMedCrossRefGoogle Scholar
  40. Holley RW (1965) Structure of an alanine transfer ribonucleic acid. JAMA 194:868–871PubMedCrossRefGoogle Scholar
  41. Holley RW, Everett GA, Madison JT, Zamir A (1965) Nucleotides sequences in the yeast alanine transfer ribonucleic acid. J Biol Chem 240:2122–2128PubMedGoogle Scholar
  42. Honda BM, Roeder RG (1980) Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation. Cell 22:119–126PubMedCrossRefGoogle Scholar
  43. Hopper AK, Pai DA, Engelke DR (2010) Cellular dynamics of tRNAs and their genes. FEBS Lett 584:310–317PubMedCrossRefGoogle Scholar
  44. Juhling F, Morl M, Hartmann RK, Sprinzl M, Stadler PF, Putz J (2009) tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 37:D159–D162PubMedCrossRefGoogle Scholar
  45. Kachouri R, Stribinskis V, Zhu Y, Ramos KS, Westhof E, Li Y (2005) A surprisingly large RNase P RNA in Candida glabrata. RNA 11:1064–1072PubMedCrossRefGoogle Scholar
  46. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066PubMedCrossRefGoogle Scholar
  47. Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231PubMedCrossRefGoogle Scholar
  48. Kruszka K, Barneche F, Guyot R, Ailhas J, Meneau I, Schiffer S, Marchfelder A, Echeverria M (2003) Plant dicistronic tRNA-snoRNA genes: a new mode of expression of the small nucleolar RNAs processed by RNase Z. EMBO J 22:621–632PubMedCrossRefGoogle Scholar
  49. Kunkel GR, Pederson T (1989) Transcription of a human U6 small nuclear RNA gene in vivo withstands deletion of intragenic sequences but not of an upstream TATATA box. Nucleic Acids Res 17:7371–7379PubMedCrossRefGoogle Scholar
  50. Kurtzman CP (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res 4:233–245PubMedCrossRefGoogle Scholar
  51. Lee JY, Rohlman CE, Molony LA, Engelke DR (1991) Characterization of RPR1, an essential gene encoding the RNA component of Saccharomyces cerevisiae nuclear RNase P. Mol Cell Biol 11:721–730PubMedGoogle Scholar
  52. Lépingle A, Casaregola S, Neuvéglise C, Bon E, Nguyen H, Artiguenave F, Wincker P, Gaillardin C (2000) Genomic exploration of the hemiascomycetous yeasts: 14. Debaryomyces hansenii var. hansenii. FEBS Lett 487:82–86PubMedCrossRefGoogle Scholar
  53. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964PubMedGoogle Scholar
  54. Lowe TM, Eddy SR (1999) A computational screen for methylation guide snoRNAs in yeast. Science 283:1168–1171PubMedCrossRefGoogle Scholar
  55. Marck C, Grosjean H (2002) tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 8:1189–1232PubMedCrossRefGoogle Scholar
  56. Marck C, Grosjean H (2003) Identification of BHB splicing motifs in intron-containing tRNAs from 18 archaea: evolutionary implications. RNA 9:1516–1531PubMedCrossRefGoogle Scholar
  57. Marck C, Kachouri-Lafond R, Lafontaine I, Westhof E, Dujon B, Grosjean H (2006) The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Res 34:1816–1835PubMedCrossRefGoogle Scholar
  58. Massey SE, Moura G, Beltrao P, Almeida R, Garey JR, Tuite MF, Santos MA (2003) Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Genome Res 13:544–557PubMedCrossRefGoogle Scholar
  59. Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614PubMedGoogle Scholar
  60. Nguyen HV, Gaillardin C, Neuvéglise C (2009) Differentiation of Debaryomyces hansenii and Candida famata by rRNA gene intergenic spacer fingerprinting and reassessment of phylogenetic relationships among D. hansenii, C. famata, D. fabryi, C. flareri (=D. subglobosus) and D. prosopidis: description of D. vietnamensis sp. nov. closely related to D. nepalensis. FEMS Yeast Res 9:641–662PubMedCrossRefGoogle Scholar
  61. Oficjalska-Pham D, Harismendy O, Smagowicz WJ, Gonzalez de Peredo A, Boguta M, Sentenac A, Lefebvre O (2006) General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1. Mol Cell 22:623–632PubMedCrossRefGoogle Scholar
  62. Paule MR, White RJ (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res 28:1283–1298PubMedCrossRefGoogle Scholar
  63. Pelham HRB, Brown DD (1980) A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc Natl Acad Sci USA 77:4170–4174PubMedCrossRefGoogle Scholar
  64. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276PubMedCrossRefGoogle Scholar
  65. Phizicky EM, Hopper AK (2010) tRNA biology charges to the front. Genes Dev 24:1832–1860PubMedCrossRefGoogle Scholar
  66. Reyes VM, Newman A, Abelson J (1986) Mutational analysis of the coordinate expression of the yeast tRNAArg-tRNAAsp gene tandem. Mol Cell Biol 6:2436–2442PubMedGoogle Scholar
  67. Roberts DN, Stewart AJ, Huff JT, Cairns BR (2003) The RNA polymerase III transcriptome revealed by genome-wide localization and activity-occupancy relationships. Proc Natl Acad Sci USA 100:14695–14700PubMedCrossRefGoogle Scholar
  68. Schramm L, Hernandez N (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev 16:2593–2620PubMedCrossRefGoogle Scholar
  69. Schultz P, Marzouki N, Marck C, Ruet A, Oudet P, Sentenac A (1989) The two DNA-binding domains of yeast transcription factor tau as observed by scanning transmission electron microscopy. EMBO J 8:3815–3824PubMedGoogle Scholar
  70. Schurer H, Schiffer S, Marchfelder A, Morl M (2001) This is the end: processing, editing and repair at the tRNA 3′-terminus. Biol Chem 382:1147–1156PubMedGoogle Scholar
  71. Soma A, Onodera A, Sugahara J, Kanai A, Yachie N, Tomita M, Kawamura F, Sekine Y (2007) Permuted tRNA genes expressed via a circular RNA intermediate in Cyanidioschyzon merolae. Science 318:450–453PubMedCrossRefGoogle Scholar
  72. Souciet J, Aigle M, Artiguenave F, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P, Casaregola S, de Montigny J, Dujon B, Durrens P, Gaillardin C, Lepingle A, Llorente B, Malpertuy A, Neuvéglise C, Ozier-Kalogeropoulos O, Potier S, Saurin W, Tekaia F, Toffano-Nioche C, Wesolowski-Louvel M, Wincker P, Weissenbach J (2000) Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Lett 487:3–12PubMedCrossRefGoogle Scholar
  73. Souciet JL, Dujon B, Gaillardin C, Johnston M, Baret PV, Cliften P, Sherman DJ, Weissenbach J, Westhof E, Wincker P, Jubin C, Poulain J, Barbe V, Segurens B, Artiguenave F, Anthouard V, Vacherie B, Val ME, Fulton RS, Minx P, Wilson R, Durrens P, Jean G, Marck C, Martin T, Nikolski M, Rolland T, Seret ML, Casaregola S, Despons L, Fairhead C, Fischer G, Lafontaine I, Leh V, Lemaire M, de Montigny J, Neuvéglise C, Thierry A, Blanc-Lenfle I, Bleykasten C, Diffels J, Fritsch E, Frangeul L, Goeffon A, Jauniaux N, Kachouri-Lafond R, Payen C, Potier S, Pribylova L, Ozanne C, Richard GF, Sacerdot C, Straub ML, Talla E (2009) Comparative genomics of protoploid Saccharomycetaceae. Genome Res 19:1696–1709PubMedCrossRefGoogle Scholar
  74. Sprague KU (1995) Transcription of eukaryotic tRNA genes. In: Söll D, RajBhandary U (eds) tRNA: structure, biosynthesis, and function. ASM, Washington, DC, pp 31–50Google Scholar
  75. Tang DT, Glazov EA, McWilliam SM, Barris WC, Dalrymple BP (2009) Analysis of the complement and molecular evolution of tRNA genes in cow. BMC Genomics 10:188PubMedCrossRefGoogle Scholar
  76. Tani T, Ohshima Y (1989) The gene for the U6 small nuclear RNA in fission yeast has an intron. Nature 337:87–90PubMedCrossRefGoogle Scholar
  77. Tavenet A, Suleau A, Dubreuil G, Ferrari R, Ducrot C, Michaut M, Aude JC, Dieci G, Lefebvre O, Conesa C, Acker J (2009) Genome-wide location analysis reveals a role for Sub1 in RNA polymerase III transcription. Proc Natl Acad Sci USA 106:14265–14270PubMedCrossRefGoogle Scholar
  78. Trotta CR, Miao F, Arn EA, Stevens SW, Ho CK, Rauhut R, Abelson JN (1997) The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. Cell 89:849–858PubMedCrossRefGoogle Scholar
  79. van Heerikhuizen H, Ykema A, Klootwijk J, Gaillardin C, Ballas C, Fournier P (1985) Heterogeneity in the ribosomal RNA genes of the yeast Yarrowia lipolytica; cloning and analysis of two size classes of repeats. Gene 39:213–222PubMedCrossRefGoogle Scholar
  80. White RJ (1998) RNA polymerase III transcription, 2nd edn. Springer/Landes Bioscience, New YorkGoogle Scholar
  81. Willis I, Hottinger H, Pearson D, Chisholm V, Leupold U, Söll D (1984) Mutations affecting excision of the intron from eukaryotic dimeric tRNA precursor. EMBO J 3:1573–1580PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cécile Neuvéglise
    • 1
    Email author
  • Claude Gaillardin
    • 1
  • Christian Marck
    • 2
  1. 1.INRA UMR1319AgroParisTech, Micalis, Centre de Biotechnologie Agro-IndustrielleThiverval-GrignonFrance
  2. 2.Institut de Biologie et Technologies de Saclay (iBiTec-S)Gif-sur-Yvette CedexFrance

Personalised recommendations