Skip to main content

Noncoding RNA Genes Transcribed by RNA Polymerase III in Yarrowia lipolytica

  • Chapter
  • First Online:
Yarrowia lipolytica

Part of the book series: Microbiology Monographs ((MICROMONO,volume 24))

  • 983 Accesses

Abstract

In the hemiascomycetous yeast Yarrowia lipolytica, the Pol III-transcribed ncRNAs display a number of unusual and remarkable features with respect to other Hemiascomycetes. With 510 bona fide genes, the genome of this organism contains the largest number of tRNA genes among yeasts. Unlike all other Hemiascomycetes which unconventionally decode the Leu CUN and Arg CGN codons like bacteria, Y. lipolytica follows the regular eukaryotic rule. Full genome sequencing of the first Hemiascomycetes revealed many cases of tandem tRNA genes. Such genes are present in Y. lipolytica, together with other unexpected cases of Pol III hybrid genes. In Y. lipolytica, contrary to most Hemiascomycetes and similarly to Schizosaccharomyces pombe, the 5S rRNA genes (transcribed by Pol III) are not embedded into the multiple rDNA units. Y. lipolytica appears unique with the presence of ~50 copies of hybrid dicistronic tRNA-5S rRNA genes coexisting with ~60 copies of more conventional, isolated 5S rRNA genes. These hybrid genes were shown experimentally to be actively co-transcribed in vitro and in vivo from the leader tRNA genes rendering the specific transcription factor of 5S rRNA genes, TFIIIA, dispensable. Y. lipolytica also contains a novel ncRNA, RUF70, expressed from multiple genes located 3′ to each of the 13 copies of the tRNA-Trp gene. Such a complex assembly of Pol III genes is not found outside the Yarrowia clade. Many Pol III-related features differentiate Y. lipolytica from other Hemiascomycetes, rendering it closer to Schizosaccharomyces pombe, to other ascomycetes, and to the rest of eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Ikemura T, Ohara Y, Uehara H, Kinouchi M, Kanaya S, Yamada Y, Muto A, Inokuchi H (2009) tRNADB-CE: tRNA gene database curated manually by experts. Nucleic Acids Res 37:D163–D168

    Article  PubMed  CAS  Google Scholar 

  • Acker J, Ozanne C, Kachouri-Lafond R, Gaillardin C, Neuvéglise C, Marck C (2008) Dicistronic tRNA-5S rRNA genes in Yarrowia lipolytica: an alternative TFIIIA-independent way for expression of 5S rRNA genes. Nucleic Acids Res 36:5832–5844

    Article  PubMed  CAS  Google Scholar 

  • Baker RE, Camier S, Sentenac A, Hall BD (1987) Gene size differentially affects the binding of yeast transcription factor τ to two intragenic regions. Proc Natl Acad Sci USA 84:8768–8772

    Article  PubMed  CAS  Google Scholar 

  • Belfort M, Weiner A (1997) Another bridge between kingdoms: tRNA splicing in archaea and eukaryotes. Cell 89:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Braglia P, Percudani R, Dieci G (2005) Sequence context effects on oligo(dT) termination signal recognition by Saccharomyces cerevisiae RNA polymerase III. J Biol Chem 280:19551–19562

    Article  PubMed  CAS  Google Scholar 

  • Brow DA, Guthrie C (1990) Transcription of a yeast U6 snRNA gene requires a polymerase III promoter element in a novel position. Genes Dev 4:1345–1356

    Article  PubMed  CAS  Google Scholar 

  • Burnol A-F, Margottin F, Huet J, Almouzni G, Prioleau M-N, Mechali M, Sentenac A (1993) TFIIIC relieves repression of U6 snRNA transcription by chromatin. Nature 362:475–477

    Article  PubMed  CAS  Google Scholar 

  • Camier S, Dechampesme AM, Sentenac A (1995) The only essential function of TFIIIA in yeast is the transcription of 5S rRNA genes. Proc Natl Acad Sci USA 92:9338–9342

    Article  PubMed  CAS  Google Scholar 

  • Casaregola S, Neuvéglise C, Lepingle A, Bon E, Feynerol C, Artiguenave F, Wincker P, Gaillardin C (2000) Genomic exploration of the hemiascomycetous yeasts: 17. Yarrowia lipolytica. FEBS Lett 487:95–100

    Article  PubMed  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  PubMed  CAS  Google Scholar 

  • Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37:D93–D97

    Article  PubMed  CAS  Google Scholar 

  • Ciesla M, Towpik J, Graczyk D, Oficjalska-Pham D, Harismendy O, Suleau A, Balicki K, Conesa C, Lefebvre O, Boguta M (2007) Maf1 is involved in coupling carbon metabolism to RNA polymerase III transcription. Mol Cell Biol 27:7693–7702

    Article  PubMed  CAS  Google Scholar 

  • Clare JJ, Davidow LS, Gardner DC, Oliver SG (1986) Cloning and characterisation of the ribosomal RNA genes of the dimorphic yeast, Yarrowia lipolytica. Curr Genet 10:449–452

    Article  PubMed  CAS  Google Scholar 

  • Crick FH (1966) Codon–anticodon pairing: the wobble hypothesis. J Mol Biol 19:548–555

    Article  PubMed  CAS  Google Scholar 

  • De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566

    Article  PubMed  Google Scholar 

  • Dieci G, Sentenac A (1996) Facilitated recycling pathway for RNA polymerase III. Cell 84:245–252

    Article  PubMed  CAS  Google Scholar 

  • Dieci G, Percudani R, Giuliodori S, Bottarelli L, Ottonello S (2000) TFIIIC-independent in vitro transcription of yeast tRNA genes. J Mol Biol 299:601–613

    Article  PubMed  CAS  Google Scholar 

  • Dieci G, Giuliodori S, Catellani M, Percudani R, Ottonello S (2002) Intragenic promoter adaptation and facilitated RNA polymerase III recycling in the transcription of SCR1, the 7SL RNA gene of Saccharomyces cerevisiae. J Biol Chem 277:6903–6914

    Article  PubMed  CAS  Google Scholar 

  • Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A (2007) The expanding RNA polymerase III transcriptome. Trends Genet 23:614–622

    Article  PubMed  CAS  Google Scholar 

  • Donze D, Adams CR, Rine J, Kamakaka RT (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 13:698–708

    Article  PubMed  CAS  Google Scholar 

  • Ducrot C, Lefebvre O, Landrieux E, Guirouilh-Barbat J, Sentenac A, Acker J (2006) Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors. J Biol Chem 281:11685–11692

    Article  PubMed  CAS  Google Scholar 

  • Dujon B (2006) Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution. Trends Genet 22:375–387

    Article  PubMed  CAS  Google Scholar 

  • Dujon B (2010) Yeast evolutionary genomics. Nat Rev Genet 11:512–524

    Article  PubMed  CAS  Google Scholar 

  • Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuvéglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430:35–44

    Article  PubMed  Google Scholar 

  • Dumay-Odelot H, Marck C, Durrieu-Gaillard S, Lefebvre O, Jourdain S, Prochazkova M, Pflieger A, Teichmann M (2007) Identification, molecular cloning, and characterization of the sixth subunit of human transcription factor TFIIIC. J Biol Chem 282:17179–17189

    Article  PubMed  CAS  Google Scholar 

  • Engelke DR, Gegenheimer P, Abelson J (1985) Nucleolytic processing of a tRNAArg-tRNAAsp dimeric precursor by a homologous component from Saccharomyces cerevisiae. J Biol Chem 260:1271–1279

    PubMed  CAS  Google Scholar 

  • Englert M, Felis M, Junker V, Beier H (2004) Novel upstream and intragenic control elements for the RNA polymerase III-dependent transcription of human 7SL RNA genes. Biochimie 86:867–874

    Article  PubMed  CAS  Google Scholar 

  • Esakova O, Krasilnikov AS (2010) Of proteins and RNA: the RNase P/MRP family. RNA 16:1725–1747

    Article  PubMed  CAS  Google Scholar 

  • Ferrari R, Rivetti C, Acker J, Dieci G (2004) Distinct roles of transcription factors TFIIIB and TFIIIC in RNA polymerase III transcription reinitiation. Proc Natl Acad Sci USA 3:13442–13447

    Article  Google Scholar 

  • Geiduschek EP, Kassavetis GA (2001) The RNA polymerase III transcription apparatus. J Mol Biol 310:1–26

    Article  PubMed  CAS  Google Scholar 

  • Ghavi-Helm Y, Michaut M, Acker J, Aude JC, Thuriaux P, Werner M, Soutourina J (2008) Genome-wide location analysis reveals a role of TFIIS in RNA polymerase III transcription. Genes Dev 22:1934–1947

    Article  PubMed  CAS  Google Scholar 

  • Grosjean H, de Crecy-Lagard V, Marck C (2010) Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Lett 584:252–264

    Article  PubMed  CAS  Google Scholar 

  • Guddat U, Bakken AH, Pieler T (1990) Protein-mediated nuclear export of RNA: 5S rRNA containing small RNPs in xenopus oocytes. Cell 60:619–628

    Article  PubMed  CAS  Google Scholar 

  • Guffanti E, Percudani R, Harismendy O, Soutourina J, Werner M, Iacovella MG, Negri R, Dieci G (2006) Nucleosome depletion activates poised RNA polymerase III at unconventional transcription sites in Saccharomyces cerevisiae. J Biol Chem 281:29155–29164

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Haldar D, Kamakaka RT (2006) tRNA genes as chromatin barriers. Nat Struct Mol Biol 13:192–193

    Article  PubMed  CAS  Google Scholar 

  • Harismendy O, Gendrel CG, Soularue P, Gidrol X, Sentenac A, Werner M, Lefebvre O (2003) Genome-wide location of yeast RNA polymerase III transcription machinery. EMBO J 22:4738–4747

    Article  PubMed  CAS  Google Scholar 

  • He F, Beckerich JM, Ribes V, Tollervey D, Gaillardin CM (1989) Two genes encode 7SL RNAs in the yeast Yarrowia lipolytica. Curr Genet 16:347–350

    Article  PubMed  CAS  Google Scholar 

  • Holley RW (1965) Structure of an alanine transfer ribonucleic acid. JAMA 194:868–871

    Article  PubMed  CAS  Google Scholar 

  • Holley RW, Everett GA, Madison JT, Zamir A (1965) Nucleotides sequences in the yeast alanine transfer ribonucleic acid. J Biol Chem 240:2122–2128

    PubMed  CAS  Google Scholar 

  • Honda BM, Roeder RG (1980) Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation. Cell 22:119–126

    Article  PubMed  CAS  Google Scholar 

  • Hopper AK, Pai DA, Engelke DR (2010) Cellular dynamics of tRNAs and their genes. FEBS Lett 584:310–317

    Article  PubMed  CAS  Google Scholar 

  • Juhling F, Morl M, Hartmann RK, Sprinzl M, Stadler PF, Putz J (2009) tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 37:D159–D162

    Article  PubMed  Google Scholar 

  • Kachouri R, Stribinskis V, Zhu Y, Ramos KS, Westhof E, Li Y (2005) A surprisingly large RNase P RNA in Candida glabrata. RNA 11:1064–1072

    Article  PubMed  CAS  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  PubMed  CAS  Google Scholar 

  • Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231

    Article  PubMed  CAS  Google Scholar 

  • Kruszka K, Barneche F, Guyot R, Ailhas J, Meneau I, Schiffer S, Marchfelder A, Echeverria M (2003) Plant dicistronic tRNA-snoRNA genes: a new mode of expression of the small nucleolar RNAs processed by RNase Z. EMBO J 22:621–632

    Article  PubMed  CAS  Google Scholar 

  • Kunkel GR, Pederson T (1989) Transcription of a human U6 small nuclear RNA gene in vivo withstands deletion of intragenic sequences but not of an upstream TATATA box. Nucleic Acids Res 17:7371–7379

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman CP (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res 4:233–245

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Rohlman CE, Molony LA, Engelke DR (1991) Characterization of RPR1, an essential gene encoding the RNA component of Saccharomyces cerevisiae nuclear RNase P. Mol Cell Biol 11:721–730

    PubMed  CAS  Google Scholar 

  • Lépingle A, Casaregola S, Neuvéglise C, Bon E, Nguyen H, Artiguenave F, Wincker P, Gaillardin C (2000) Genomic exploration of the hemiascomycetous yeasts: 14. Debaryomyces hansenii var. hansenii. FEBS Lett 487:82–86

    Article  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1999) A computational screen for methylation guide snoRNAs in yeast. Science 283:1168–1171

    Article  PubMed  CAS  Google Scholar 

  • Marck C, Grosjean H (2002) tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 8:1189–1232

    Article  PubMed  CAS  Google Scholar 

  • Marck C, Grosjean H (2003) Identification of BHB splicing motifs in intron-containing tRNAs from 18 archaea: evolutionary implications. RNA 9:1516–1531

    Article  PubMed  CAS  Google Scholar 

  • Marck C, Kachouri-Lafond R, Lafontaine I, Westhof E, Dujon B, Grosjean H (2006) The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Res 34:1816–1835

    Article  PubMed  CAS  Google Scholar 

  • Massey SE, Moura G, Beltrao P, Almeida R, Garey JR, Tuite MF, Santos MA (2003) Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Genome Res 13:544–557

    Article  PubMed  CAS  Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614

    PubMed  CAS  Google Scholar 

  • Nguyen HV, Gaillardin C, Neuvéglise C (2009) Differentiation of Debaryomyces hansenii and Candida famata by rRNA gene intergenic spacer fingerprinting and reassessment of phylogenetic relationships among D. hansenii, C. famata, D. fabryi, C. flareri (=D. subglobosus) and D. prosopidis: description of D. vietnamensis sp. nov. closely related to D. nepalensis. FEMS Yeast Res 9:641–662

    Article  PubMed  CAS  Google Scholar 

  • Oficjalska-Pham D, Harismendy O, Smagowicz WJ, Gonzalez de Peredo A, Boguta M, Sentenac A, Lefebvre O (2006) General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1. Mol Cell 22:623–632

    Article  PubMed  CAS  Google Scholar 

  • Paule MR, White RJ (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res 28:1283–1298

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB, Brown DD (1980) A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc Natl Acad Sci USA 77:4170–4174

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276

    Article  PubMed  CAS  Google Scholar 

  • Phizicky EM, Hopper AK (2010) tRNA biology charges to the front. Genes Dev 24:1832–1860

    Article  PubMed  Google Scholar 

  • Reyes VM, Newman A, Abelson J (1986) Mutational analysis of the coordinate expression of the yeast tRNAArg-tRNAAsp gene tandem. Mol Cell Biol 6:2436–2442

    PubMed  CAS  Google Scholar 

  • Roberts DN, Stewart AJ, Huff JT, Cairns BR (2003) The RNA polymerase III transcriptome revealed by genome-wide localization and activity-occupancy relationships. Proc Natl Acad Sci USA 100:14695–14700

    Article  PubMed  CAS  Google Scholar 

  • Schramm L, Hernandez N (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev 16:2593–2620

    Article  PubMed  CAS  Google Scholar 

  • Schultz P, Marzouki N, Marck C, Ruet A, Oudet P, Sentenac A (1989) The two DNA-binding domains of yeast transcription factor tau as observed by scanning transmission electron microscopy. EMBO J 8:3815–3824

    PubMed  CAS  Google Scholar 

  • Schurer H, Schiffer S, Marchfelder A, Morl M (2001) This is the end: processing, editing and repair at the tRNA 3′-terminus. Biol Chem 382:1147–1156

    PubMed  CAS  Google Scholar 

  • Soma A, Onodera A, Sugahara J, Kanai A, Yachie N, Tomita M, Kawamura F, Sekine Y (2007) Permuted tRNA genes expressed via a circular RNA intermediate in Cyanidioschyzon merolae. Science 318:450–453

    Article  PubMed  CAS  Google Scholar 

  • Souciet J, Aigle M, Artiguenave F, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P, Casaregola S, de Montigny J, Dujon B, Durrens P, Gaillardin C, Lepingle A, Llorente B, Malpertuy A, Neuvéglise C, Ozier-Kalogeropoulos O, Potier S, Saurin W, Tekaia F, Toffano-Nioche C, Wesolowski-Louvel M, Wincker P, Weissenbach J (2000) Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Lett 487:3–12

    Article  PubMed  Google Scholar 

  • Souciet JL, Dujon B, Gaillardin C, Johnston M, Baret PV, Cliften P, Sherman DJ, Weissenbach J, Westhof E, Wincker P, Jubin C, Poulain J, Barbe V, Segurens B, Artiguenave F, Anthouard V, Vacherie B, Val ME, Fulton RS, Minx P, Wilson R, Durrens P, Jean G, Marck C, Martin T, Nikolski M, Rolland T, Seret ML, Casaregola S, Despons L, Fairhead C, Fischer G, Lafontaine I, Leh V, Lemaire M, de Montigny J, Neuvéglise C, Thierry A, Blanc-Lenfle I, Bleykasten C, Diffels J, Fritsch E, Frangeul L, Goeffon A, Jauniaux N, Kachouri-Lafond R, Payen C, Potier S, Pribylova L, Ozanne C, Richard GF, Sacerdot C, Straub ML, Talla E (2009) Comparative genomics of protoploid Saccharomycetaceae. Genome Res 19:1696–1709

    Article  PubMed  Google Scholar 

  • Sprague KU (1995) Transcription of eukaryotic tRNA genes. In: Söll D, RajBhandary U (eds) tRNA: structure, biosynthesis, and function. ASM, Washington, DC, pp 31–50

    Google Scholar 

  • Tang DT, Glazov EA, McWilliam SM, Barris WC, Dalrymple BP (2009) Analysis of the complement and molecular evolution of tRNA genes in cow. BMC Genomics 10:188

    Article  PubMed  Google Scholar 

  • Tani T, Ohshima Y (1989) The gene for the U6 small nuclear RNA in fission yeast has an intron. Nature 337:87–90

    Article  PubMed  CAS  Google Scholar 

  • Tavenet A, Suleau A, Dubreuil G, Ferrari R, Ducrot C, Michaut M, Aude JC, Dieci G, Lefebvre O, Conesa C, Acker J (2009) Genome-wide location analysis reveals a role for Sub1 in RNA polymerase III transcription. Proc Natl Acad Sci USA 106:14265–14270

    Article  PubMed  CAS  Google Scholar 

  • Trotta CR, Miao F, Arn EA, Stevens SW, Ho CK, Rauhut R, Abelson JN (1997) The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. Cell 89:849–858

    Article  PubMed  CAS  Google Scholar 

  • van Heerikhuizen H, Ykema A, Klootwijk J, Gaillardin C, Ballas C, Fournier P (1985) Heterogeneity in the ribosomal RNA genes of the yeast Yarrowia lipolytica; cloning and analysis of two size classes of repeats. Gene 39:213–222

    Article  PubMed  Google Scholar 

  • White RJ (1998) RNA polymerase III transcription, 2nd edn. Springer/Landes Bioscience, New York

    Google Scholar 

  • Willis I, Hottinger H, Pearson D, Chisholm V, Leupold U, Söll D (1984) Mutations affecting excision of the intron from eukaryotic dimeric tRNA precursor. EMBO J 3:1573–1580

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Joël Acker for helpful discussions, Carl Mann for correcting the manuscript, and all our colleagues from the Génolevures consortium. This work was supported by the GDR CNRS 2354 “Génolevures-3,” the ANR grant “Genarise” (ANR-05-BLAN-0331), and the ANR grant “RegPolStress” (ANR-07-BLAN-0039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Neuvéglise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neuvéglise, C., Gaillardin, C., Marck, C. (2013). Noncoding RNA Genes Transcribed by RNA Polymerase III in Yarrowia lipolytica . In: Barth, G. (eds) Yarrowia lipolytica. Microbiology Monographs, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38320-5_4

Download citation

Publish with us

Policies and ethics