Concept-Forming Operators on Multilattices

  • Jesús Medina-Moreno
  • Manuel Ojeda-Aciego
  • Jorge Ruiz-Calviño
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7880)


Adjoint pairs or adjoint triples defined on lattices have proven to be a useful tool when working in fuzzy formal concept analysis. This paper shows that adjoint pairs and triples can play as well an important role within the framework of multilattices, especially in order to form the Galois connections needed to build concept multilattices.


Fuzzy formal concept analysis Galois connection Multilattices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bělohlávek, R.: Lattice generated by binary fuzzy relations (extended abstract). In: 4th Intl. Conf. on Fuzzy Sets Theory and Applications, p. 11 (1998)Google Scholar
  2. 2.
    Bělohlávek, R.: Concept lattices and order in fuzzy logic. Annals of Pure and Applied Logic 128, 277–298 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Benado, M.: Les ensembles partiellement ordonnés et le théorème de raffinement de Schreier, II. Théorie des multistructures. Czechoslovak Mathematical Journal 5(80), 308–344 (1955)MathSciNetGoogle Scholar
  4. 4.
    Burusco, A., Fuentes-González, R.: The study of L-fuzzy concept lattice. Mathware & Soft Computing 3, 209–218 (1994)Google Scholar
  5. 5.
    Cordero, P., Gutiérrez, G., Martínez, J., de Guzmán, I.P.: A new algebraic tool for automatic theorem provers. Annals of Mathematics and Artificial Intelligence 42(4), 369–398 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cornejo, M., Medina, J., Ramírez, E.: A comparative study of adjoint triples. Fuzzy Sets and Systems 211, 1–14 (2012)CrossRefGoogle Scholar
  7. 7.
    Damásio, C.V., Medina, J., Ojeda-Aciego, M.: Sorted multi-adjoint logic programs: Termination results and applications. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 252–265. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Damásio, C., Medina, J., Ojeda-Aciego, M.: Termination of logic programs with imperfect information: Applications and query procedure. Journal of Applied Logic 5, 435–458 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Davey, B., Priestley, H.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press (2002)Google Scholar
  10. 10.
    Diday, E., Emilion, R.: Maximal and stochastic Galois lattices. Discrete Applied Mathematics 127(2), 271–284 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundation. Springer (1999)Google Scholar
  12. 12.
    Georgescu, G., Popescu, A.: Concept lattices and similarity in non-commutative fuzzy logic. Fundamenta Informaticae 53(1), 23–54 (2002)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hansen, D.: An axiomatic characterization of multilattices. Discrete Mathematics 1, 99–101 (1981)CrossRefGoogle Scholar
  14. 14.
    Krajči, S.: The basic theorem on generalized concept lattice. In: Snásel, V., Bělohlávek, R. (eds.) International Workshop on Concept Lattices and their Applications, CLA 2004, pp. 25–33 (2004)Google Scholar
  15. 15.
    Krajči, S.: A generalized concept lattice. Logic Journal of IGPL 13(5), 543–550 (2005)zbMATHCrossRefGoogle Scholar
  16. 16.
    Martínez, J., Gutiérrez, G., de Guzmán, I., Cordero, P.: Generalizations of lattices via non-deterministic operators. Discrete Mathematics 295, 107–141 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Fuzzy logic programming via multilattices. Fuzzy Sets and Systems 158, 674–688 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Relating generalized concept lattices with concept lattices for non-commutative conjunctors. Applied Mathematics Letters 21(12), 1296–1300 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets and Systems 160(2), 130–144 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Pollandt, S.: Fuzzy Begriffe. Springer, Berlin (1997)zbMATHCrossRefGoogle Scholar
  21. 21.
    Ruiz-Calviño, J., Medina, J.: Fuzzy formal concept analysis via multilattices: First prospects and results. In: The 9th International Conference on Concept Lattices and Their Applications (CLA 2012), pp. 69–79 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jesús Medina-Moreno
    • 1
  • Manuel Ojeda-Aciego
    • 2
  • Jorge Ruiz-Calviño
    • 3
  1. 1.Department of MathematicsUniversity of CádizSpain
  2. 2.Department Applied MathematicsUniversity of MálagaSpain
  3. 3.Department of MathematicsUniversity of CórdobaSpain

Personalised recommendations