Advertisement

Modeling Ceteris Paribus Preferences in Formal Concept Analysis

  • Sergei Obiedkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7880)

Abstract

We present a context-based semantics for parameterized ceteris paribus preferences over attributes subsets. Such preferences are only required to hold when the alternatives being compared agree on a specified subset of attributes. We show that ceteris paribus preferences valid in a preference context correspond to implications of a special formal context derived from the original preference context. We prove that the problem of checking the semantic consequence relation for parameterized ceteris paribus preferences is coNP-complete. We then discuss the relation between parameterized and classical, i.e., non-parameterized, ceteris paribus preferences, which are only required to hold “all other things being equal”. We show that a non-parameterized preference is a special case of a parameterized preference, while any parameterized preference can be represented by an exponentially large set of non-parameterized preferences.

Keywords

implications formal concept analysis preference logic ceteris paribus preferences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van Benthem, J., Girard, P., Roy, O.: Everything else being equal: A modal logic for ceteris paribus preferences. J. Philosophical Logic 38(1), 83–125 (2009)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bienvenu, M., Lang, J., Wilson, N.: From preference logics to preference languages, and back. In: Proceedings of the Twelfth International Conference on Principles of Knowledge Representation and Reasoning, pp. 9–13. AAAI Press, Menlo Park (2010)Google Scholar
  3. 3.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. (JAIR) 21, 135–191 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Brafman, R.I., Domshlak, C.: Introducing variable importance tradeoffs into cp-nets. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp. 69–76. Morgan Kaufmann Publishers Inc. (2002)Google Scholar
  5. 5.
    Brafman, R.I., Domshlak, C.: Preference handling—an introductory tutorial. AI Magazine 30(1), 58–86 (2009)Google Scholar
  6. 6.
    Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. Wiley (2004)Google Scholar
  7. 7.
    Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: An overview. Artificial Intelligence 175(78), 1037–1052 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)zbMATHCrossRefGoogle Scholar
  9. 9.
    Obiedkov, S.: From preferences over objects to preferences over concepts. In: Proceedings of the 6th Multidisciplinary Workshop on Advances in Preference Handling, Montpellier, France, in conjunction with ECAI 2012 (August 2012), http://mpref2012.lip6.fr/proceedings/ObiedkovMPREF2012.pdf
  10. 10.
    Obiedkov, S.: Modeling preferences over attribute sets in formal concept analysis. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 227–243. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Wilson, N.: Computational techniques for a simple theory of conditional preferences. Artif. Intell. 175(7-8), 1053–1091 (2011)zbMATHCrossRefGoogle Scholar
  12. 12.
    von Wright, G.H.: The Logic of Preference. Edinburgh University Press (1963)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sergei Obiedkov
    • 1
  1. 1.Higher School of EconomicsNational Research UniversityMoscowRussia

Personalised recommendations