Vectorial Quasi-flat Zones for Color Image Simplification

  • Erhan Aptoula
  • Jonathan Weber
  • Sébastien Lefèvre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7883)

Abstract

Quasi-flat zones enable the computation of homogeneous image regions with respect to one or more arbitrary criteria, such as pixel intensity. They are most often employed in simplification and segmentation, while multiple strategies exist for their application to color data as well. In this paper we explore a vector ordering based alternative method for computing color quasi-flat zones, which enables the use of vectorial α and ω parameters. The interest of this vectorial strategy w.r.t marginal quasi-flat zones is illustrated both qualitatively and quantitatively by means of color simplification and segmentation experiments.

Keywords

Quasi-flat zones Image partition Image simplification Color morphology Vector orderings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angulo, J., Serra, J.: Color segmentation by ordered mergings. In: Proceedings of the IEEE International Conference on Image Processing, Barcelona, Spain, pp. 125–128 (September 2003)Google Scholar
  2. 2.
    Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognition 40(11), 2914–2929 (2007)MATHCrossRefGoogle Scholar
  3. 3.
    Aptoula, E., Lefèvre, S.: Alpha-trimmed lexicographical extrema for pseudo morphological image analysis. Journal of Visual Communication and Image Representation 19(3), 165–174 (2008)CrossRefGoogle Scholar
  4. 4.
    Brunner, D., Soille, P.: Iterative area filtering of multichannel images. Image and Vision Computing 25(8), 1352–1364 (2007)CrossRefGoogle Scholar
  5. 5.
    Carleer, A., Debeir, O., Wolff, E.: Assessment of very high spatial resolution satellite image segmentations. Photogrammetric Engineering & Remote Sensing 71(11), 1285–1294 (2005)Google Scholar
  6. 6.
    Derivaux, S., Forestier, G., Wemmert, C., Lefèvre, S.: Supervised image segmentation using watershed transform, fuzzy classification and evolutionary computation. Pattern Recognition Letters 31(15), 2364–2374 (2010)CrossRefGoogle Scholar
  7. 7.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, Vancouver, Canada, vol. 2, pp. 416–425 (July 2001)Google Scholar
  8. 8.
    Meyer, F.: The levelings. In: Proceedings of the International Symposium on Mathematical Morphology, Amsterdam, The Netherlands, pp. 199–206 (June 1998)Google Scholar
  9. 9.
    Ouzounis, G.K., Soille, P.: Pattern spectra from partition pyramids and hierarchies. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 108–119. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Serra, J. (ed.): Image Analysis and Mathematical Morphology, vol. 2: Theoretical Advances, 1st edn. Academic Press (February 1988)Google Scholar
  11. 11.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(7), 1132–1145 (2008)CrossRefGoogle Scholar
  12. 12.
    Weber, J.: Segmentation morphologique interactive pour la fouille de séquences vidéo. Ph.D. thesis, Université de Strasbourg, France (2011)Google Scholar
  13. 13.
    Weber, J., Lefèvre, S.: Fast quasi-flat zones filtering using area threshold and region merging. Journal of Visual Communication and Image Representation 24(3), 397–409 (2013)CrossRefGoogle Scholar
  14. 14.
    Weber, J., Lefèvre, S., Gançarski, P.: Interactive video segmentation based on quasi-flat zones. In: International Symposium on Image and Signal Processing and Analysis (ISPA), Dubrovnik, Croatia, pp. 265–270 (September 2011)Google Scholar
  15. 15.
    Zanoguera, F.: Segmentation interactive d’images fixes et de séquences vidéo basée sur des hierarchies de partitions. Ph.D. thesis, Ecole des Mines de Paris (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Erhan Aptoula
    • 1
  • Jonathan Weber
    • 2
  • Sébastien Lefèvre
    • 3
  1. 1.Okan UniversityTurkey
  2. 2.LORIA-UMR 7503Université de LorraineFrance
  3. 3.IRISAUniversité de Bretagne-SudFrance

Personalised recommendations