Abstract

Connectivity is the basis of several methodological concepts in mathematical morphology. In graph-based approaches, the notion of connectivity can be derived from the notion of adjacency. In this preliminary work, we investigate the effects of relaxing the symmetry property of adjacency. In particular, we observe the consequences on the induced connected components, that are no longer organised as partitions but as covers, and on the hierarchies that are obtained from such components. These hierarchies can extend data structures such as component-trees and partition-trees, and the associated filtering and segmentation paradigms, leading to improved image processing tools.

Keywords

connectivity cover hierarchy connected operators filtering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloch, I., Maître, H., Anvar, M.: Fuzzy adjacency between image objects. Int. J. Uncertain. Fuzz. 5, 615–654 (1997)MATHCrossRefGoogle Scholar
  2. 2.
    Braga-Neto, U., Goutsias, J.K.: A theoretical tour of connectivity in image processing and analysis. J. Math. Imaging Vis. 19, 5–31 (2003)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: Minimum spanning forests and the drop of water principle. IEEE T. Pattern Anal. 31, 1362–1374 (2009)CrossRefGoogle Scholar
  4. 4.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: Thinnings, shortest path forests, and topological watersheds. IEEE T. Pattern Anal. 32, 925–939 (2010)CrossRefGoogle Scholar
  5. 5.
    Dufour, A., Tankyevych, O., Naegel, B., Talbot, H., Ronse, C., Baruthio, J., Dokládal, P., Passat, N.: Filtering and segmentation of 3D angiographic data: Advances based on mathematical morphology. Med. Image Anal. (2012), doi:10.1016/j.media.2012.08.004 (in press)Google Scholar
  6. 6.
    Guigues, L., Cocquerez, J.-P., Le Men, H.: Scale-sets image analysis. Int. J. Comput. Vision 68, 289–317 (2006)CrossRefGoogle Scholar
  7. 7.
    Heijmans, H.J.A.M.: Connected morphological operators for binary images. Comput. Vis. Image Und. 73, 99–120 (1999)MATHCrossRefGoogle Scholar
  8. 8.
    Jones, R.: Connected filtering and segmentation using component trees. Comput. Vis. Image Und. 75, 215–228 (1999)CrossRefGoogle Scholar
  9. 9.
    Meyer, F., Najman, L.: Segmentation, minimum spanning tree and hierarchies. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Applications, pp. 229–261. ISTE/J. Wiley & Sons (2010)Google Scholar
  10. 10.
    Najman, L.: On the equivalence between hierarchical segmentations and ultrametric watersheds. J. Math. Imaging Vis. 40, 231–247 (2011)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ouzounis, G.K., Wilkinson, M.H.F.: Mask-based second-generation connectivity and attribute filters. IEEE T. Pattern Anal. 29, 990–1004 (2007)CrossRefGoogle Scholar
  12. 12.
    Passat, N., Naegel, B.: Component-hypertrees for image segmentation. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 284–295. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Passat, N., Naegel, B.: Component-trees and multivalued images: Structural properties. Technical report, INRIA-00611714 (2012), url: http://hal.inria.fr/inria-00611714
  14. 14.
    Perret, B., Lefèvre, S., Collet, C., Slezak, E.: Hyperconnections and hierarchical representations for grayscale and multiband image processing. IEEE T. Image Proc. 21, 14–27 (2012)CrossRefGoogle Scholar
  15. 15.
    Ronse, C.: Set-theoretical algebraic approaches to connectivity in continuous or digital spaces. J. Math. Imaging Vis. 8, 41–58 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rosenfeld, A.: Connectivity in digital pictures. J. Assoc. Comput. Mach. 17, 146–160 (1970)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Rosenfeld, A.: Fuzzy digital topology. Inform. Control 40, 76–87 (1979)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation and information retrieval. IEEE T. Image Proc. 9, 561–576 (2000)CrossRefGoogle Scholar
  19. 19.
    Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE T. Image Proc. 7, 555–570 (1998)CrossRefGoogle Scholar
  20. 20.
    Salembier, P., Wilkinson, M.H.F.: Connected operators: A review of region-based morphological image processing techniques. IEEE Signal Proc. Mag. 26, 136–157 (2009)CrossRefGoogle Scholar
  21. 21.
    Serra, J.: Mathematical morphology for Boolean lattices. In: Serra, J. (ed.) Image Analysis and Mathematical Morphology, II: Theoretical Advances, pp. 37–58. Academic Press, London (1988)Google Scholar
  22. 22.
    Serra, J.: Connectivity on complete lattices. J. Math. Imaging Vis. 9, 231–251 (1998)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Serra, J.: Tutorial on connective morphology. IEEE J. Sel. Top. Signa. 6, 739–752 (2012)CrossRefGoogle Scholar
  24. 24.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE T. Pattern Anal. 30, 1132–1145 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Olena Tankyevych
    • 1
  • Hugues Talbot
    • 2
  • Nicolas Passat
    • 3
  1. 1.LISSIUniversité Paris-EstCréteilFrance
  2. 2.LIGM, ESIEE-ParisUniversité Paris-EstFrance
  3. 3.CReSTICUniversité de ReimsFrance

Personalised recommendations