Efficient Schemes for Computing α-tree Representations

  • Jiří Havel
  • François Merciol
  • Sébastien Lefèvre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7883)


Hierarchical image representations have been addressed by various models by the past, the max-tree being probably its best representative within the scope of Mathematical Morphology. However, the max-tree model requires to impose an ordering relation between pixels, from the lowest values (root) to the highest (leaves). Recently, the α-tree model has been introduced to avoid such an ordering. Indeed, it relies on image quasi-flat zones, and as such focuses on local dissimilarities. It has led to successful attempts in remote sensing and video segmentation. In this paper, we deal with the problem of α-tree computation, and propose several efficient schemes which help to ensure real-time (or near-real time) morphological image processing.


α-tree Quasi-Flat Zones Image Partition Hierarchies Efficient Algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, Vancouver, Canada, vol. 2, pp. 416–425 (July 2001)Google Scholar
  2. 2.
    Matas, P., Dokladalova, E., Akil, M., Georgiev, V., Poupa, M.: Parallel hardware implementation of connected component tree computation. In: 2010 International Conference on Field Programmable Logic and Applications (FPL), August 31-September 2, pp. 64–69 (2010)Google Scholar
  3. 3.
    Merciol, F., Lefèvre, S.: Fast image and video segmentation based on α-tree multiscale representation. In: International Conference on Signal Image Technology Internet Systems, Naples, Italy (November 2012)Google Scholar
  4. 4.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Transactions on Image Processing 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  5. 5.
    Ouzounis, G., Syrris, V., Gueguen, L., Soille, P.: The switchboard platform for interactive image information mining. In: Soille, P., Iapaolo, M., Marchetti, P., Datcu, M. (eds.) Proc. of 8th Conference on Image Information Mining, pp. 26–30. ESA-EUSC-JRC (October 2012)Google Scholar
  6. 6.
    Ouzounis, G.K., Soille, P.: Pattern spectra from partition pyramids and hierarchies. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 108–119. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Perret, B., Lefèvre, S., Collet, C., Slezak, E.: Hyperconnections and hierarchical representations for grayscale and multiband image processing. IEEE Transactions on Image Processing 21(1), 14–27 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Transactions on Image Processing 9(4), 561–576 (2000)CrossRefGoogle Scholar
  9. 9.
    Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Transactions on Image Processing 7(4), 555–570 (1998)CrossRefGoogle Scholar
  10. 10.
    Serra, J.: Anamorphoses and function lattices. In: Dougherty, E.R. (ed.) Mathematical Morphology in Image Processing, ch. 13, pp. 483–523. Marcel Dekker, New York (1993)Google Scholar
  11. 11.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1132–1145 (2008)CrossRefGoogle Scholar
  12. 12.
    Soille, P., Grazzini, J.: Constrained connectivity and transition regions. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 59–69. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Soille, P., Najman, L.: On morphological hierarchical representations for image processing and spatial data clustering. In: Köthe, U., Montanvert, A., Soille, P. (eds.) WADGMM 2010. LNCS, vol. 7346, pp. 43–67. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22, 215–225 (1975)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jiří Havel
    • 1
  • François Merciol
    • 2
  • Sébastien Lefèvre
    • 2
  1. 1.Brno University of TechnologyCzech Republic
  2. 2.IRISAUniversité de Bretagne-SudFrance

Personalised recommendations