An Ontology Design Pattern for Cartographic Map Scaling

  • David Carral
  • Simon Scheider
  • Krzysztof Janowicz
  • Charles Vardeman
  • Adila A. Krisnadhi
  • Pascal Hitzler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7882)

Abstract

The concepts of scale is at the core of cartographic abstraction and mapping. It defines which geographic phenomena should be displayed, which type of geometry and map symbol to use, which measures can be taken, as well as the degree to which features need to be exaggerated or spatially displaced. In this work, we present an ontology design pattern for map scaling using the Web Ontology Language (OWL) within a particular extension of the OWL RL profile. We explain how it can be used to describe scaling applications, to reason over scale levels, and geometric representations. We propose an axiomatization that allows us to impose meaningful constraints on the pattern, and, thus, to go beyond simple surface semantics. Interestingly, this includes several functional constraints currently not expressible in any of the OWL profiles. We show that for this specific scenario, the addition of such constraints does not increase the reasoning complexity which remains tractable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press (2007)Google Scholar
  2. 2.
    Bittner, T., Donnelly, M., Smith, B.: A spatio-temporal ontology for geographic information integration. Int. J. Geogr. Inf. Sci. 23(6), 765–798 (2009)CrossRefGoogle Scholar
  3. 3.
    Carral Martínez, D., Hitzler, P.: Extending description logic rules. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 345–359. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Degbelo, A., Kuhn, W.: A Conceptual Analysis of Resolution. In: XIII GEOINFO, Brazilian Symposium on Geoinformatics, Campos do Jordão, Sao Paolo, Brazil, pp. 11–22 (2012)Google Scholar
  5. 5.
    Frank, A.: Scale is introduced in spatial datasets by observation processes. In: Spatial Data Quality From Process to Decision (6th ISSDQ 2009), pp. 17–29. CRC Press (2009)Google Scholar
  6. 6.
    Gangemi, A., Presutti, V.: Towards a pattern science for the semantic web. Semantic Web 1(1-2), 61–68 (2010)Google Scholar
  7. 7.
    Gething, P., Patil, A., Smith, D., Guerra, C., Elyazar, I., Johnston, G., Tatem, A., Hay, S.: A new world malaria map: Plasmodium falciparum endemicity in 2010. Malaria Journal 10(1), 378 (2011)CrossRefGoogle Scholar
  8. 8.
    Goodchild, M.F., Proctor, J.: Scale in a digital geographic world. Geographical and Environmental Modelling, 5–23 (1997)Google Scholar
  9. 9.
    Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: Proc. 12th Int. Conf. on World Wide Web (WWW 2003), pp. 48–57. ACM (2003)Google Scholar
  10. 10.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \(\mathcal{SROIQ}\). In: Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57–67. AAAI Press (2006)Google Scholar
  11. 11.
    Kazakov, Y.: Saturation-Based Decision Procedures for Extensions of the Guarded Fragment. Ph.D. thesis, Universität des Saarlandes, Saarbrücken, Germany (March 2006)Google Scholar
  12. 12.
    Krötzsch, M., Simancik, F., Horrocks, I.: A description logic primer. CoRR abs/1201.4089 (2012)Google Scholar
  13. 13.
    Kuhn, W.: Core Concepts of Spatial Information: A First Selection. In: XII GEOINFO, Campos do Jordão, Brazil, November 27-29, pp. 13–26 (2011)Google Scholar
  14. 14.
    McMaster, R.B., Shea, K.S.: Cartographic Generalization in a Digital Environment: A Framework for implementation in a GIS. In: GIS/LIS 1988, San Antonio, Texas, USA, pp. 240–249 (1988)Google Scholar
  15. 15.
    Müller, J., Lagrange, J., Weibel, R.: GIS and Generalization: Methodology and Practice. Taylor and Francis (1989)Google Scholar
  16. 16.
    Montello, D.: Scale in Geography. In: International Encyclopedia of the Social and Behavioral Sciences, pp. 13501–13504 (2001)Google Scholar
  17. 17.
    Scheider, S., Kuhn, W.: Affordance-based categorization of road network data using a grounded theory of channel networks. International Journal of Geographical Information Science 24(8), 1249–1267 (2010)CrossRefGoogle Scholar
  18. 18.
    Stadler, C., Lehmann, J., Höffner, K., Auer, S.: LinkedGeoData: A core for a web of spatial open data. Semantic Web (2012)Google Scholar
  19. 19.
    Stell, J., Worboys, M.: Stratified map spaces: A formal basis for multi-resolution spatial databases. In: SDH 1998 Proceedings 8th International Symposium on Spatial Data Handling, pp. 180–189 (1998)Google Scholar
  20. 20.
    Wu, J., Li, H.: Concepts of scale and scaling, pp. 3–15. Springer (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David Carral
    • 1
  • Simon Scheider
    • 2
  • Krzysztof Janowicz
    • 3
  • Charles Vardeman
    • 4
  • Adila A. Krisnadhi
    • 1
  • Pascal Hitzler
    • 1
  1. 1.Kno.e.sis CenterWright State UniversityUSA
  2. 2.Institute for GeoinformaticsUniversity of MünsterMünsterGermany
  3. 3.Department of GeographyUniversity of CaliforniaSanta BarbaraUSA
  4. 4.Center for Research ComputingUniversity of Notre DameNotre DameUSA

Personalised recommendations