Collecting Links between Entities Ranked by Human Association Strengths

  • Jörn Hees
  • Mohamed Khamis
  • Ralf Biedert
  • Slim Abdennadher
  • Andreas Dengel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7882)

Abstract

In recent years, the ongoing adoption of Semantic Web technologies has lead to a large amount of Linked Data that has been generated. While in the early days of the Semantic Web we were fighting data scarcity, nowadays we suffer from an overflow of information. In many situations we want to restrict the amount of facts which is shown to an end-user or passed on to another system to just the most important ones.

In this paper we propose to rank facts in accordance to human association strengths between concepts. In order to collect a ground truth we developed a Family Feud like web-game called “Knowledge Test Game”. Given a Linked Data entity it collects other associated Linked Data entities from its players. We explain the game’s concept, its suggestion box which maps the players’ text input back to Linked Data entities and include a detailed evaluation of the game showing promising results. The collected data is published and can be used to evaluate algorithms which rank facts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  2. 2.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)CrossRefGoogle Scholar
  3. 3.
    Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - A crystallization point for the Web of Data. Web Semantics: Science, Services and Agents on the WWW 7(3), 154–165 (2009)CrossRefGoogle Scholar
  4. 4.
    Berners-Lee, T.: Linked Data - Design Issues (2009)Google Scholar
  5. 5.
    von Ahn, L., Dabbish, L.: Designing games with a purpose. Communications of the ACM 51(8), 58–67 (2008)Google Scholar
  6. 6.
    Hees, J., Roth-Berghofer, T., Biedert, R., Adrian, B., Dengel, A.: BetterRelations: Collecting Association Strengths for Linked Data Triples with a Game. In: Ceri, S., Brambilla, M. (eds.) Search Computing III. LNCS, vol. 7538, pp. 223–239. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Siorpaes, K., Hepp, M.: Games with a Purpose for the Semantic Web. IEEE Intelligent Systems 23(3), 50–60 (2008)CrossRefGoogle Scholar
  8. 8.
    Hees, J., Roth-Berghofer, T., Dengel, A.: Linked Data Games: Simulating Human Association with Linked Data. In: LWA 2010, Kassel, Germany, pp. 255–260 (2010)Google Scholar
  9. 9.
    Hees, J., Roth-Berghofer, T., Biedert, R., Adrian, B., Dengel, A.: BetterRelations: Using a Game to Rate Linked Data Triples. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS, vol. 7006, pp. 134–138. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Kny, E., Kölle, S., Töpper, G., Wittmers, E.: WhoKnows? (October 2010)Google Scholar
  11. 11.
    Wolf, L., Knuth, M., Osterhoff, J., Sack, H.: RISQ! Renowned Individuals Semantic Quiz – A Jeopardy like Quiz Game for Ranking Facts. In: Proc. of the I-SEMANTICS, Graz, Austria, pp. 71–78. ACM (2011)Google Scholar
  12. 12.
    Cilibrasi, R.L., Vitányi, P.M.B.: The Google Similarity Distance. IEEE Trans. Knowledge and Data Engineering 19(3), 370–383 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jörn Hees
    • 1
    • 2
  • Mohamed Khamis
    • 3
  • Ralf Biedert
    • 2
    • 4
  • Slim Abdennadher
    • 3
  • Andreas Dengel
    • 1
    • 2
  1. 1.Computer Science DepartmentUniversity of KaiserslauternGermany
  2. 2.Knowledge Management DepartmentDFKI GmbHKaiserslauternGermany
  3. 3.Computer Science & Engineering DepartmentGerman University in CairoEgypt
  4. 4.Tobii Technology ABStockholmSweden

Personalised recommendations