No Size Fits All – Running the Star Schema Benchmark with SPARQL and RDF Aggregate Views

  • Benedikt Kämpgen
  • Andreas Harth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7882)


Statistics published as Linked Data promise efficient extraction, transformation and loading (ETL) into a database for decision support. The predominant way to implement analytical query capabilities in industry are specialised engines that translate OLAP queries to SQL queries on a relational database using a star schema (ROLAP). A more direct approach than ROLAP is to load Statistical Linked Data into an RDF store and to answer OLAP queries using SPARQL. However, we assume that general-purpose triple stores – just as typical relational databases – are no perfect fit for analytical workloads and need to be complemented by OLAP-to-SPARQL engines. To give an empirical argument for the need of such an engine, we first compare the performance of our generated SPARQL and of ROLAP SQL queries. Second, we measure the performance gain of RDF aggregate views that, similar to aggregate tables in ROLAP, materialise parts of the data cube.


Linked Data OLAP Star Schema Benchmark View 


  1. 1.
    Bog, A., Plattner, H., Zeier, A.: A mixed transaction processing and operational reporting benchmark. Information Systems Frontiers 13, 321–335 (2011)CrossRefGoogle Scholar
  2. 2.
    Castillo, R., Leser, U.: Selecting Materialized Views for RDF Data. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010 Workshops. LNCS, vol. 6385, pp. 126–137. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Duan, S., Kementsietsidis, A., Srinivas, K., Udrea, O.: Apples and Oranges: a Comparison of RDF Benchmarks and Real RDF Datasets. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data (2011)Google Scholar
  4. 4.
    Erling, O.: Directions and Challenges for Semdata. In: Proceedings of Workshop on Semantic Data Management (SemData@VLDB 2010) (2010)Google Scholar
  5. 5.
    Erling, O.: Virtuoso, a Hybrid RDBMS/Graph Column Store. IEEE Data Eng. Bull. 35, 3–8 (2012)Google Scholar
  6. 6.
    Etcheverry, L., Vaisman, A.A.: Enhancing OLAP Analysis with Web Cubes. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 469–483. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Etcheverry, L., Vaisman, A.A.: QB4OLAP: A Vocabulary for OLAP Cubes on the Semantic Web. In: Proceedings of the Third International Workshop on Consuming Linked Data (2012)Google Scholar
  8. 8.
    Goasdoué, F., Karanasos, K., Leblay, J., Manolescu, I.: View Selection in Semantic Web Databases. PVLDB 5, 97–108 (2011)Google Scholar
  9. 9.
    Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery 1, 29–53 (1997)CrossRefGoogle Scholar
  10. 10.
    Gupta, A., Mumick, I.S.: Maintenance of Materialized Views: Problems, Techniques, and Applications. In: Materialized Views. MIT Press (1999)Google Scholar
  11. 11.
    Harinarayan, V., Rajaraman, A.: Implementing Data Cubes Efficiently. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data (1996)Google Scholar
  12. 12.
    Kämpgen, B., Harth, A.: Transforming Statistical Linked Data for Use in OLAP Systems. In: Proceedings of the 7th International Conference on Semantic Systems (2011)Google Scholar
  13. 13.
    Kämpgen, B., Harth, A.: Benchmark Document for No Size Fits All – Running the Star Schema Benchmark with SPARQL and RDF Aggregate Views (2012),
  14. 14.
    Kämpgen, B., O’Riain, S., Harth, A.: Interacting with Statistical Linked Data via OLAP Operations. In: Proceedings of Workshop on Interacting with Linked Data (2012)Google Scholar
  15. 15.
    Morfonios, K., Konakas, S., Ioannidis, Y., Kotsis, N.: ROLAP Implementations of the Data Cube. ACM Computing Surveys 39 (2007)Google Scholar
  16. 16.
    O’Neil, P., O’Neil, E., Chen, X.: Star Schema Benchmark - Revision 3. Tech. rep., UMass/Boston (2009),
  17. 17.
    Stonebraker, M., Bear, C., Cetintemel, U., Cherniack, M., Ge, T., Hachem, N., Harizopoulos, S., Lifter, J., Rogers, J., Zdonik, S.: One Size Fits All? – Part 2: Benchmarking Results. In: Proceedings of the Third International Conference on Innovative Data Systems Research (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Benedikt Kämpgen
    • 1
  • Andreas Harth
    • 1
  1. 1.Institute AIFBKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations