Blind Deblurring Using a Simplified Sharpness Index

  • Arthur Leclaire
  • Lionel Moisan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7893)

Abstract

It was shown recently that the phase of the Fourier Transform of an image could lead to interesting no-reference image quality measures. The Global Phase Coherence, and its recent Gaussian variant called Sharpness Index, rate the sharpness of an image in contrast not only with blur, but also noise, ringing, etc. In this work, we introduce a new variant of these indices, that can be computed with one Fourier Transform only, hence four times quicker than the Sharpness Index. We use this new index S to build an image restoration algorithm that, in a stochastic framework, selects a radial-unimodal deconvolution kernel for which the S-value of the restored image is optimal. Experiments are discussed, and comparison is made with a radial oracle deconvolution filter and the recent blind deconvolution algorithm of Levin et al.

Keywords

global phase coherence sharpness blind deconvolution no-reference image quality assessment oracle deconvolution filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanchet, G., Moisan, L., Rougé, B.: Measuring the Global Phase Coherence of an Image. In: Proceedings of ICIP 2008, pp. 1176–1179 (2008)Google Scholar
  2. 2.
    Blanchet, G., Moisan, L.: An Explicit Sharpness Index Related to Global Phase Coherence. In: Proceedings of ICASSP 2012, pp. 1065–1068 (2012)Google Scholar
  3. 3.
    Calderero, F., Moreno, P.: Evaluation of Sharpness Measures and Proposal of a Stop Criterion for Reverse Diffusion in the Context of Image Deblurring. In: Proceedings of VISAPP 2013 (2013)Google Scholar
  4. 4.
    Chambolle, A., Pock, T.: A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. Journal of Mathematical Imaging and Vision 40(1), 161–179 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Desolneux, A., Moisan, L., Morel, J.-M.: Dequantizing image orientation. IEEE Transactions on Image Processing 11(10), 1129–1140 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Desolneux, A., Moisan, L., Ronsin, S.: A Compact Representation of Random Phase and Gaussian Textures. In: Proceedings of ICASSP 2012, pp. 1381–1384 (2012)Google Scholar
  7. 7.
    Frisen, M.: Unimodal Regression. Journal of the Royal Statistical Society. Series D The Statistician 35(4), 479–485 (1986)Google Scholar
  8. 8.
    Galerne, B., Gousseau, Y., Morel, J.-M.: Random Phase Textures: Theory and Synthesis. IEEE Transactions on Image Processing 20(1), 257–267 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hassen, R., Wang, Z., Salama, M.: No-Reference Image Sharpness Assessment Based on Local Phase Coherence Measurement. In: Proc. of ICASSP 2010, pp. 2434–2437 (2010)Google Scholar
  10. 10.
    Kovesi, P.: Phase Congruency: a Low-level Image Invariant. Psychological Research 64, 136–148 (2000)CrossRefGoogle Scholar
  11. 11.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient Marginal Likelihood Optimization in Blind Deconvolution. In: Proceedings of CVPR 2011 (2011)Google Scholar
  12. 12.
    Moisan, L.: Periodic Plus Smooth Image Decomposition. Journal of Mathematical Imaging and Vision 39(2), 120–145 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Morrone, M.C., Burr, D.C.: Feature Detection in Human Vision: a Phase-Dependent Energy Model. Proc. R. Soc. Lond. B235, 221–245 (1988)Google Scholar
  14. 14.
    Oppenheim, A.V., Lim, J.S.: The Importance of Phase in Signals. Proceedings of the IEEE 69, 529–541 (1981)CrossRefGoogle Scholar
  15. 15.
    Wang, Z., Simoncelli, E.P.: Local Phase Coherence and the Perception of Blur. Adv. Neural Information Processing Systems (NIPS 2003) 16, 786–792 (2004)Google Scholar
  16. 16.
    Zhu, X., Milanfar, P.: Automatic Parameter Selection for Denoising Algorithms Using a No-Reference Measure of Image Content. IEEE Transactions on Image Processing 19(12), 3116–3132 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arthur Leclaire
    • 1
  • Lionel Moisan
    • 1
  1. 1.MAP5, CNRS UMR 8145Université Paris DescartesFrance

Personalised recommendations