Advertisement

Adaptive Second-Order Total Variation: An Approach Aware of Slope Discontinuities

  • Frank Lenzen
  • Florian Becker
  • Jan Lellmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7893)

Abstract

Total variation (TV) regularization, originally introduced by Rudin, Osher and Fatemi in the context of image denoising, has become widely used in the field of inverse problems. Two major directions of modifications of the original approach were proposed later on. The first concerns adaptive variants of TV regularization, the second focuses on higher-order TV models. In the present paper, we combine the ideas of both directions by proposing adaptive second-order TV models, including one anisotropic model. Experiments demonstrate that introducing adaptivity results in an improvement of the reconstruction error.

Keywords

second-order total variation adaptive anisotropic directional TV TGV slope discontinuities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berkels, B., Burger, M., Droske, M., Nemitz, O., Rumpf, M.: Cartoon extraction based on anisotropic image classification. In: Vision, Modeling, and Visualization Proceedings, pp. 293–300 (2006)Google Scholar
  2. 2.
    Bredies, K., Kunisch, K., Pock, T.: Total Generalized Variation. SIAM J. Imaging Sciences 3(3), 492–526 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chen, Q., Montesinos, P., Sun, Q.S., Heng, P.A., Xia, D.S.: Adaptive total variation denoising based on difference curvature. Image Vision Comput. 28(3), 298–306 (2010)CrossRefGoogle Scholar
  4. 4.
    Dong, Y., Hintermüller, M.: Multi-scale total variation with automated regularization parameter selection for color image restoration. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 271–281. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proc. ISPRS Conf. on Fast Processing of Photogrammetric Data, pp. 281–305 (1987)Google Scholar
  6. 6.
    Frick, K., Marnitz, P., Munk, A.: Statistical multiresolution estimation for variational imaging: With an application in Poisson-biophotonics. J. Math. Imaging Vis, 1–18 (2012)Google Scholar
  7. 7.
    Grasmair, M.: Locally adaptive total variation regularization. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 331–342. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Grasmair, M., Lenzen, F.: Anisotropic Total Variation Filtering. Appl. Math. Optim. 62(3), 323–339 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hu, Y., Jacob, M.: Higher degree total variation (HDTV) regularization for image recovery. IEEE Trans. Image Processing 21, 2559–2571 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005) (electronic)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Lefkimmiatis, S., Bourquard, A., Unser, M.: Hessian-based norm regularization for image restoration with biomedical applications. IEEE Transactions on Image Processing 21(3), 983–995 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lenzen, F., Becker, F., Lellmann, J., Petra, S., Schnörr, C.: A class of quasi-variational inequalities for adaptive image denoising and decomposition. Comput. Optim. Appl. (2012) (online first )Google Scholar
  13. 13.
    Lysaker, M., Tai, X.-C.: Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comp. Vis. 66, 5–18 (2006)CrossRefGoogle Scholar
  14. 14.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1-4), 259–268 (1992)zbMATHCrossRefGoogle Scholar
  15. 15.
    Scherzer, O.: Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing 60, 1–27 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer (2009)Google Scholar
  17. 17.
    Setzer, S., Steidl, G., Teuber, T.: Infimal convolution regularizations with discrete l1-type functionals. Comm. Math. Sci. 9, 797–872 (2011)MathSciNetGoogle Scholar
  18. 18.
    Steidl, G., Teuber, T.: Anisotropic smoothing using double orientations. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 477–489. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Frank Lenzen
    • 1
  • Florian Becker
    • 1
  • Jan Lellmann
    • 2
  1. 1.Heidelberg Collaboratory for Image Processing (HCI)HeidelbergGermany
  2. 2.DAMTPUniversity of CambridgeUK

Personalised recommendations