Wimmelbild Analysis with Approximate Curvature Coding Distance Images

  • Julia Bergbauer
  • Sibel Tari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7893)


We consider a task of tracing out target figures hidden in teeming figure pictures come to known as Wimmelbild(er). Wimmelbild is a popular genre of visual puzzles; a timeless classic for children, artists and cognitive scientists.

Particularly suited to the considered task, we propose a diffuse representation which serves as a heuristic approximation mimicking curvature coding distance images. Curvature coding distance images received increased attention in recent years. Typically, they are computed as solutions to variants of Poisson PDE. The proposed approximation is based on erosion of the white space (background) followed by isotropic averaging, hence, does not require solving a PDE.


Poisson PDE and its variants level sets non-linear diffusion figure-hunt games teeming figure pictures applications of variational and PDE methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubert, G., Aujol, J.F.: Poisson skeleton revisited: A new mathematical perspective. J. Math. Imaging Vis. (2012)Google Scholar
  2. 2.
    Dimitrov, P., Lawlor, M., Zucker, S.W.: Distance images and intermediate-level vision. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 653–664. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Fornasier, M., Toniolo, D.: Fast, robust and efficient 2d pattern recognition for re-assembling fragmented images. Pattern Recognition 38(11), 2074–2087 (2005)CrossRefGoogle Scholar
  4. 4.
    Gottschald, K.: Ueber den Einfluss der Erfahrung auf die Wahrnehmung von Figuren. Psychologische Forschung 8, 261–317 (1926)CrossRefGoogle Scholar
  5. 5.
    Gurumoorthy, K.S., Rangarajan, A.: A schrödinger equation for the fast computation of approximate euclidean distance functions. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 100–111. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Keles, H.Y., Ozkar, M., Tari, S.: Weighted shapes for embedding perceived wholes. Environment and Planning B: Planning and Design 39, 360–375 (2012)CrossRefGoogle Scholar
  7. 7.
    Mainberger, M., Schmaltz, C., Berg, M., Weickert, J., Backes, M.: Diffusion-based image compression in steganography. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C., Wang, S., Choi, M.-H., Mantler, S., Schulze, J., Acevedo, D., Mueller, K., Papka, M. (eds.) ISVC 2012, Part II. LNCS, vol. 7432, pp. 219–228. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging,Vision,and Graphics. Springer-Verlag New York, Inc., Secaucus (2003)zbMATHGoogle Scholar
  9. 9.
    Paragios, N.: A variational approach for the segmentation of the left ventricle in cardiac image analysis. International Journal of Computer Vision 50(3), 345–362 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Pien, H., Desai, M., Shah, J.: Segmentation of MR images using curve evolution and prior information. Int. J. Pattern Recogn. 11(8), 1233–1245 (1997)CrossRefGoogle Scholar
  11. 11.
    Tari, S., Genctav, M.: From a modified Ambrosio-Tortorelli to a randomized part hierarchy tree. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 267–278. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Tari, Z., Shah, J., Pien, H.: A computationally efficient shape analysis via level sets. In: Proceedings of the Workshop on Mathematical Methos in Biomedical Image Analysis, pp. 234–243 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Julia Bergbauer
    • 1
  • Sibel Tari
    • 2
  1. 1.TU MunichGarching bei MuenchenGermany
  2. 2.Middle East Technical UniversityAnkaraTurkey

Personalised recommendations