Variational Method for Computing Average Images of Biological Organs

  • Shun Inagaki
  • Atsushi Imiya
  • Hidekata Hontani
  • Shouhei Hanaoka
  • Yoshitaka Masutani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7893)


In this paper, we develop a variational method for the computation of average images of biological organs in three-dimensional Euclidean space. The average of three-dimensional biological organs is an essential feature to discriminate abnormal organs from normal organs. We combine the diffusion registration technique and optical flow computation for the computation of spatial deformation field between the averages and each input organ. We define the average as the shape which minimises the total deformation.


Input Image Average Image Biological Organ Average Shape Median Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grigorescu, C., Petkov, N.: Distance Sets for Shape Filters and Shape Recognition. IEEE Trans. IP 12, 1274–1286 (2003)MathSciNetGoogle Scholar
  2. 2.
    Hajnal, J.V., Hill, D.L.G., Hawkes, D.J.: Medical Image Registration. Phys. Med. Bio.l 46, R1–R45 (2001)Google Scholar
  3. 3.
    Fischer, B., Modersitzki, J.: Ill-posed Medicine - An Introduction to Image Registration. Inverse Prob. 24, 1–17 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Rumpf, M., Wirth, B.: A Nonlinear Elastic Shape Averaging Approach. SIAM J. Imaging Sci. 2, 800–833 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: On Aligning Curves. IEEE Trans. PAMI 25, 116–125 (2003)CrossRefGoogle Scholar
  6. 6.
    Baeza-Yates, R., Valiente, G.: An Image Similarity Measure Based on Graph Matching. In: Proc. SPIRE 2000, pp. 8–38 (2000)Google Scholar
  7. 7.
    Riesen, K., Bunke, H.: Approximate Graph Edit Distance Computation by Means of Bipartite Graph Matching. Image and Vision Comput. 27, 950–959 (2009)CrossRefGoogle Scholar
  8. 8.
    Arrate, F., Ratnanather, J.T., Younes, L.: Diffeomorphic Active Contours. SIAM J. Imaging Sci. 3, 176–198 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Sharon, E., Mumford, D.: 2D-Shape Analysis using Conformal Mapping. IJCV 70, 55–75 (2006)CrossRefGoogle Scholar
  10. 10.
    Najman, L.: The 4D heart database,
  11. 11.
    Tănase, M., Veltkamp, R.C., Haverkort, H.J.: Multiple Polyline to Polygon Matching. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 60–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., Mitchell, J.S.B.: An Efficiently Computable Metric for Comparing Polygonal Shapes. IEEE Trans. PAMI 13, 209–216 (1991)CrossRefGoogle Scholar
  13. 13.
    Stegmann, M.B., Gomez, D.D.: A Brief Introduction to Statistical Shape Analysis. Informatics and Mathematical Modelling, Technical University of Denmark 15 (2002)Google Scholar
  14. 14.
    Srivastava, A., Joshi, S.H., Mio, W., Liu, X.: Statistical Shape Analysis: Clustering, Learning, and Testing. IEEE Trans. PAMI 27, 590–602 (2005)CrossRefGoogle Scholar
  15. 15.
    Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. Artif. Intell. 17, 185–204 (1981)CrossRefGoogle Scholar
  16. 16.
    Modersitzki, J.: Numerical Methods for Image Registration, OUP (2004)Google Scholar
  17. 17.
    Rumpf, M., Wirth, B.: An Elasticity-Based Covariance Analysis of Shapes. IJCV 92, 281–295 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Wirth, B., Bar, L., Rumpf, M., Sapiro, G.: A Continuum Mechanical Approach to Geodesics in Shape Space. IJCV 93, 293–318 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Berkels, B., Linkmann, G., Rumpf, M.: An SL(2) Invariant Shape Median. JMIV 37, 85–97 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press (1996)Google Scholar
  21. 21.
    Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms. IJCV 61(2), 139–157 (2005)CrossRefGoogle Scholar
  22. 22.
    Garcin, L., Rangarajan, A., Younes, L.: Non Rigid Registration of Shapes via Diffeomorphic Point Matching and Clustering. In: Proc. ICIP 2004, pp. 3299–3302. IEEE (2004)Google Scholar
  23. 23.
    Strang, G.: Computational Science and Engineering. Wellesley-Cambridge Press (2007)Google Scholar
  24. 24.
    Demmel, J.W.: Applied Numerical Linear Algebra. SIAM (1997)Google Scholar
  25. 25.
    Varga, R.S.: Matrix Iteration Analysis, 2nd edn. Springer (2000)Google Scholar
  26. 26.
    Vialard, F., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D Image Registration via Geodesic Shooting using an Efficient Adjoint Calculation. IJCV 97, 229–241 (2012)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shun Inagaki
    • 1
  • Atsushi Imiya
    • 2
  • Hidekata Hontani
    • 3
  • Shouhei Hanaoka
    • 4
  • Yoshitaka Masutani
    • 4
  1. 1.Graduate School of Advanced Integration ScienceChiba UniversityInage-kuJapan
  2. 2.Institute of Media and Information TechnologyChiba UniversityInage-kuJapan
  3. 3.Department of Computer ScienceNagoya Institute of TechnologyNagoyaJapan
  4. 4.Department of Radiology, The University of Tokyo Hospital, Division of Radiology and Biomedical Engineering, Graduate School of MedicineThe University of TokyoBunkyo-kuJapan

Personalised recommendations