Advertisement

Regularized Discrete Optimal Transport

  • Sira Ferradans
  • Nicolas Papadakis
  • Julien Rabin
  • Gabriel Peyré
  • Jean-François Aujol
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7893)

Abstract

This article introduces a generalization of discrete Optimal Transport that includes a regularity penalty and a relaxation of the bijectivity constraint. The corresponding transport plan is solved by minimizing an energy which is a convexification of an integer optimization problem. We propose to use a proximal splitting scheme to perform the minimization on large scale imaging problems. For un-regularized relaxed transport, we show that the relaxation is tight and that the transport plan is an assignment. In the general case, the regularization prevents the solution from being an assignment, but we show that the corresponding map can be used to solve imaging problems. We show an illustrative application of this discrete regularized transport to color transfer between images. This imaging problem cannot be solved in a satisfying manner without relaxing the bijective assignment constraint because of mass variation across image color palettes. Furthermore, the regularization of the transport plan helps remove colorization artifacts due to noise amplification.

Keywords

Optimal Transport color transfer variational regularization convex optimization proximal splitting manifold learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics Series. American Mathematical Society (2003)Google Scholar
  2. 2.
    Rubner, Y., Tomasi, C., Guibas, L.: A metric for distributions with applications to image databases. In: International Conference on Computer Vision (ICCV 1998), pp. 59–66 (1998)Google Scholar
  3. 3.
    Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution of the monge-katorovich mass transfer problem. Numerische Mathematik 84, 375–393 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. International Journal of Computer Vision 60, 225–240 (2004)CrossRefGoogle Scholar
  5. 5.
    Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Transactions on Computer Graphics and Applications 21, 34–41 (2001)CrossRefGoogle Scholar
  6. 6.
    Morovic, J., Sun, P.L.: Accurate 3d image colour histogram transformation. Pattern Recognition Letters 24, 1725–1735 (2003)CrossRefGoogle Scholar
  7. 7.
    McCollum, A.J., Clocksin, W.F.: Multidimensional histogram equalization and modification. In: International Conference on Image Analysis and Processing (ICIAP 2007), pp. 659–664 (2007)Google Scholar
  8. 8.
    Delon, J.: Midway image equalization. Journal of Mathematical Imaging and Vision 21, 119–134 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pitié, F., Kokaram, A.C., Dahyot, R.: Automated colour grading using colour distribution transfer. Computer Vision and Image Understanding 107, 123–137 (2007)CrossRefGoogle Scholar
  10. 10.
    Papadakis, N., Provenzi, E., Caselles, V.: A variational model for histogram transfer of color images. IEEE Transactions on Image Processing 20, 1682–1695 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Rabin, J., Peyré, G.: Wasserstein regularization of imaging problem. In: IEEE International Conderence on Image Processing (ICIP 2011), pp. 1541–1544 (2011)Google Scholar
  12. 12.
    Louet, J., Santambrogio, F.: A sharp inequality for transport maps in via approximation. Applied Mathematics Letters 25, 648–653 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Schellewald, C., Roth, S., Schnörr, C.: Evaluation of a convex relaxation to a quadratic assignment matching approach for relational object views. Image Vision Comput 25, 1301–1314 (2007)CrossRefGoogle Scholar
  14. 14.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  15. 15.
    Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing. Trans. Img. Proc. 17, 1047–1060 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc., New York (1986)zbMATHGoogle Scholar
  17. 17.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40, 120–145 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the ℓ1-ball for learning in high dimensions. In: Proc. ICML 2008, pp. 272–279. ACM, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sira Ferradans
    • 1
  • Nicolas Papadakis
    • 2
  • Julien Rabin
    • 3
  • Gabriel Peyré
    • 1
  • Jean-François Aujol
    • 2
  1. 1.CeremadeUniv. Paris-DauphineFrance
  2. 2.IMBUniversité Bordeaux 1France
  3. 3.ENSICAENUniversité de CaenFrance

Personalised recommendations