Solving the Uncalibrated Photometric Stereo Problem Using Total Variation

  • Yvain Quéau
  • François Lauze
  • Jean-Denis Durou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7893)


In this paper we propose a new method to solve the problem of uncalibrated photometric stereo, making very weak assumptions on the properties of the scene to be reconstructed. Our goal is to solve the generalized bas-relief ambiguity (GBR) by performing a total variation regularization of both the estimated normal field and albedo. Unlike most of the previous attempts to solve this ambiguity, our approach does not rely on any prior information about the shape or the albedo, apart from its piecewise smoothness. We test our method on real images and obtain results comparable to the state-of-the-art algorithms.


Integrability Constraint Photometric Stereo Total Variation Regularization Total Variation Minimization Lambertian Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrams, A., Hawley, C., Pless, R.: Heliometric Stereo: Shape from Sun Position. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 357–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Ackermann, J., Langguth, F., Fuhrmann, S., Goesele, M.: Photometric Stereo for Outdoor Webcams. In: CVPR, pp. 262–269 (2012)Google Scholar
  3. 3.
    Alldrin, N.G., Mallick, S.P., Kriegman, D.J.: Resolving the Generalized Bas-relief Ambiguity by Entropy Minimization. In: CVPR (2007)Google Scholar
  4. 4.
    Belhumeur, P.N., Kriegman, D.J., Yuille, A.L.: The Bas-Relief Ambiguity. IJCV 35(1), 33–44 (1999)CrossRefGoogle Scholar
  5. 5.
    Bresson, X., Chan, T.: Fast Dual Minimization of the Vectorial Total Variation Norm and Applications to Color Image Processing. Inverse Problems and Imaging 2(4), 455–484 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chambolle, A.: An Algorithm for Total Variation Minimization and Applications. JMIV 20(1), 89–97 (2004)MathSciNetGoogle Scholar
  7. 7.
    Chandraker, M.K., Kahl, F., Kriegman, D.J.: Reflections on the Generalized Bas-Relief Ambiguity. In: CVPR, vol. I, pp. 788–795 (2005)Google Scholar
  8. 8.
    Drbohlav, O., Chantler, M.: Can Two Specular Pixels Calibrate Photometric Stereo?. In: ICCV, vol. II, pp. 1850–1857 (2005)Google Scholar
  9. 9.
    Durou, J.-D., Aujol, J.-F., Courteille, F.: Integrating the Normal Field of a Surface in the Presence of Discontinuities. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 261–273. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Favaro, P., Papadhimitri, T.: A Closed-Form Solution to Uncalibrated Photometric Stereo via Diffuse Maxima. In: CVPR, pp. 821–828 (2012)Google Scholar
  11. 11.
    Frankot, R.T., Chellappa, R.: A Method for Enforcing Integrability in Shape from Shading Algorithms. PAMI 10(4), 439–451 (1988)zbMATHCrossRefGoogle Scholar
  12. 12.
    Georghiades, A.S.: Incorporating the Torrance and Sparrow model of reflectance in uncalibrated photometric stereo. In: ICCV, vol. II, pp. 816–823 (2003)Google Scholar
  13. 13.
    Georghiades, A.S., Kriegman, D.J., Belhumeur, P.N.: From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. PAMI 23(6), 643–660 (2001)CrossRefGoogle Scholar
  14. 14.
    Hayakawa, H.: Photometric stereo under a light-source with arbitrary motion. JOSA A 11(11), 3079–3089 (1994)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hernández, C., Vogiatzis, G., Brostow, G.J., Stenger, B., Cipolla, R.: Multiview Photometric Stereo. PAMI 30(3), 548–554 (2008)CrossRefGoogle Scholar
  16. 16.
    Hertzmann, A., Seitz, S.M.: Example-Based Photometric Stereo: Shape Reconstruction with General, Varying BRDFs. PAMI 27(8), 1254–1264 (2005)CrossRefGoogle Scholar
  17. 17.
    Horn, B.K.P.: Obtaining Shape from Shading Information. In: Shape from Shading, pp. 123–171. MIT Press (1989)Google Scholar
  18. 18.
    Horn, B.K.P.: Height and Gradient from Shading. IJCV 5(1), 37–75 (1990)CrossRefGoogle Scholar
  19. 19.
    Lin, Z., Chen, M., Ma, Y.: The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-rank Matrices. Tech. Rep. UILU-ENG-09-2215, UIUC (2009)Google Scholar
  20. 20.
    Malgouyres, F., Guichard, F.: Edge Direction Preserving Image Zooming: A Mathematical and Numerical Analysis. SIAM Num. Anal. 39(1), 1–37 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Nikolova, M.: Minimizers of Cost-functions Involving Non-smooth Data-fidelity Terms. Application to the Processing of Outliers. SIAM Num. Anal. 40(3), 965–994 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Onn, R., Bruckstein, A.M.: Integrability Disambiguates Surface Recovery in Two-Image Photometric Stereo. IJCV 5(1), 105–113 (1990)CrossRefGoogle Scholar
  23. 23.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear Total Variation Based Noise Removal Algorithms. Physica D: Nonlin. Phen. 60(1-4), 259–268 (1992)zbMATHCrossRefGoogle Scholar
  24. 24.
    Shi, B., Matsushita, Y., Wei, Y., Xu, C., Tan, P.: Self-calibrating Photometric Stereo. In: CVPR (2010)Google Scholar
  25. 25.
    Strong, D., Chan, T.: Edge-preserving and Scale-dependent Properties of Total Variation Regularization. Inv. Probl. 187, S165–S187 (2003)Google Scholar
  26. 26.
    Sunkavalli, K., Zickler, T., Pfister, H.: Visibility Subspaces: Uncalibrated Photometric Stereo with Shadows. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 251–264. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Tan, P., Mallick, S.P., Quan, L., Kriegman, D.J., Zickler, T.: Isotropy, reciprocity and the generalized bas-relief ambiguity. In: CVPR (2007)Google Scholar
  28. 28.
    Woodham, R.J.: Photometric Method for Determining Surface Orientation from Multiple Images. Opt. Engin. 19(1), 139–144 (1980)CrossRefGoogle Scholar
  29. 29.
    Wu, L., Ganesh, A., Shi, B., Matsushita, Y., Wang, Y., Ma, Y.: Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 703–717. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Yuille, A.L., Snow, D.: Shape and Albedo from Multiple Images using Integrability. In: CVPR, pp. 158–164 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yvain Quéau
    • 1
  • François Lauze
    • 2
  • Jean-Denis Durou
    • 1
  1. 1.IRIT, UMR CNRS 5505ToulouseFrance
  2. 2.Dept. of Computer ScienceUniv. of CopenhagenDenmark

Personalised recommendations