A TGV Regularized Wavelet Based Zooming Model

  • Kristian Bredies
  • Martin Holler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7893)


We propose and state a novel scheme for image magnification. It is formulated as a minimization problem which incorporates a data fidelity and a regularization term. Data fidelity is modeled using a wavelet transformation operator while the Total Generalized Variation functional of second order is applied for regularization. Well-posedness is obtained in a function space setting and an efficient numerical algorithm is developed. Numerical experiments confirm a high quality of the magnified images. In particular, with an appropriate choice of wavelets, geometrical information is preserved.


Scaling Function Wavelet Function Haar Wavelet Riesz Basis Bound Lipschitz Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bredies, K.: Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty. SFB Report 2012-006 (2012),
  2. 2.
    Bredies, K., Holler, M.: Artifact-free decompression and zooming of JPEG compressed images with total generalized variation. In: Csurka, G., et al. (eds.) VISIGRAPP 2012. CCIS, vol. 359, pp. 242–258. Springer, Heidelberg (2013)Google Scholar
  3. 3.
    Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imag. Sci. 3(3), 492–526 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bredies, K., Kunisch, K., Valkonen, T.: Properties of L 1 − TGV2: The one-dimensional case. J. Math. Anal. Appl. 389(1), 438–454 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bredies, K., Valkonen, T.: Inverse problems with second-order total generalized variation constraints. In: Proceedings of SampTA, Singapore, (2011)Google Scholar
  6. 6.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 88–97 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Commun. Pur. Appl. Math. 45(5), 485–560 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cohen, A., Daubechies, I., Vial, P.: Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 1(1), 54–81 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Lecture Notes, vol. 61. SIAM (1992)Google Scholar
  11. 11.
    Duchon, C.E.: Lanczos Filtering in One and Two Dimensions. J. Appl. Meteor. 18(8), 1016–1022 (1979)CrossRefGoogle Scholar
  12. 12.
    Kaulgud, N., Desai, U.B.: Image zooming: Use of wavelets. The International Series in Engineering and Computer Science, vol. 632, pp. 21–44. Springer (2002)Google Scholar
  13. 13.
    Malgouyres, F., Guichard, F.: Edge direction preserving image zooming: A mathematical and numerical analysis. SIAM J. Numer. Anal. 39, 1–37 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press (2001)Google Scholar
  15. 15.
    Zhang, X., Chan, T.F.: Wavelet inpainting by nonlocal total variation. Inverse Probl. Imag. 4, 191–210 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kristian Bredies
    • 1
  • Martin Holler
    • 1
  1. 1.Institute of Mathematics and Scientific ComputingUniversity of GrazGrazAustria

Personalised recommendations