Epigraphical Projection for Solving Least Squares Anscombe Transformed Constrained Optimization Problems

  • Stanislav Harizanov
  • Jean-Christophe Pesquet
  • Gabriele Steidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7893)


This paper deals with the restoration of images corrupted by a non-invertible or ill-conditioned linear transform and Poisson noise. Poisson data typically occur in imaging processes where the images are obtained by counting particles, e.g., photons, that hit the image support. By using the Anscombe transform, the Poisson noise can be approximated by an additive Gaussian noise with zero mean and unit variance. Then, the least squares difference between the Anscombe transformed corrupted image and the original image can be estimated by the number of observations. We use this information by considering an Anscombe transformed constrained model to restore the image. The advantage with respect to corresponding penalized approaches lies in the existence of a simple model for parameter estimation. We solve the constrained minimization problem by applying a primal-dual algorithm together with a projection onto the epigraph of a convex function related to the Anscombe transform. We show that this epigraphical projection can be efficiently computed by Newton’s methods with an appropriate initialization. Numerical examples demonstrate the good performance of our approach, in particular, its close behaviour with respect to the I-divergence constrained model.


Noisy Image Unique Root Poisson Noise Splitting Algorithm Nonnegative Orthant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anscombe, F.J.: The transformation of Poisson, binomial and negative-binomial data. Biometrika 35, 246–254 (1948)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aravkin, A.Y., Burkey, J.V., Friedlander, M.P.: Variational properties of value functions. Preprint Univ. British Columbia (2012)Google Scholar
  3. 3.
    Bardsley, J.M., Goldes, J.: Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation. Inverse Problems 25(9), 095005 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bot, R.I., Hendrich, C.: Convergence analysis for a primal-dual monotone + skew splitting algorithm with application to total variation minimization. Preprint Univ. Chemnitz (2012)Google Scholar
  5. 5.
    Carlavan, M., Blanc-Féraud, L.: Sparse Poisson noisy image deblurring. IEEE Transactions on Image Processing 21(4), 1834–1846 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chaux, C., Blanc-Féraud, L., Zerubia, J.: Wavelet-based restoration methods: Application in 3d confocal microscopy images. In: Proc. SPIE Conf. Wavelets, San Diego, p. 67010E (2007)Google Scholar
  8. 8.
    Chaux, C., Pesquet, J.-C., Pustelnik, N.: Nested iterative algorithms for convex constrained image recovery problems. SIAM Journal on Imaging Science 2(2), 730–762 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cherchia, G., Pustelnik, N., Pesquet, J.-C., Pesquet-Popescu, B.: A proximal approach for constrained cosparse modelling. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Kyoto, Japan (2012)Google Scholar
  10. 10.
    Chierchia, G., Pustelnik, N., Pesquet, J.-C., Pesquet-Popescu, B.: Epigraphical projection and proximal tools for solving constrained convex optimization problems - part I (2012) (preprint)Google Scholar
  11. 11.
    Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2011)CrossRefGoogle Scholar
  12. 12.
    Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued and Variational Analysis 20(2), 307–330 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Dupé, F.-X., Fadili, J., Starck, J.-L.: A proximal iteration for deconvolving Poisson noisy images using sparse representations. IEEE Transactions on Image Processing 18(2), 310–321 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Figueiredo, M.A.T., Bioucas-Dias, J.M.: Restoration of Poissonian images using alternating direction optimization. IEEE Transactions on Image Processing 19(12), 3133–3145 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hanke–Bourgeois, M.: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens. Teubner, Stuttgart (2002)zbMATHCrossRefGoogle Scholar
  16. 16.
    Jezierska, A., Chouzenoux, E., Pesquet, J.-C., Talbot, H.: A primal-dual proximal splitting approach for restoring data corrupted with Poisson-Gaussian noise. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2012), Kyoto, Japan (2012)Google Scholar
  17. 17.
    Li, J., Shen, Z., Jin, R., Zhang, X.: A reweighted ℓ2 method for image restoration with Poisson and mixed Poisson-Gaussian noise. UCLA Preprint (2012)Google Scholar
  18. 18.
    Mikkitalo, M., Foi, A.: Optimal inversion of the Anscombe transformation in low-count Poisson image denoising. IEEE Transactions on Image Processing 20(1), 99–109 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 810–817 (2009)Google Scholar
  20. 20.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)zbMATHCrossRefGoogle Scholar
  21. 21.
    Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. Journal of Visual Communication and Image Representation 21(3), 193–199 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Teuber, T., Steidl, G., Chan, R.-H.: Minimization and parameter estimation for seminorm regularization models with I-divergence constraints. Preprint Univ. Kaiserslautern (2012)Google Scholar
  23. 23.
    Vu, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Advances in Computational Mathematics (2012) (accepted)Google Scholar
  24. 24.
    Zanella, R., Boccacci, P., Zanni, L., Bertero, M.: Efficient gradient projection methods for edge-preserving removal of Poisson noise. Inverse Problems 25(4), 045010 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stanislav Harizanov
    • 1
  • Jean-Christophe Pesquet
    • 2
  • Gabriele Steidl
    • 1
  1. 1.Department of MathematicsUniversity of KaiserslauternGermany
  2. 2.Laboratoire d’Informatique Gaspard MongeUniversité Paris-EstFrance

Personalised recommendations