Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7893))

Abstract

The assessment of image denoising results depends on the respective application area, i.e. image compression, still-image acquisition, and medical images require entirely different behavior of the applied denoising method. In this paper we propose a novel, nonlinear diffusion scheme that is derived from a linear diffusion process in a value space determined by the application. We show that application-driven linear diffusion in the transformed space compares favorably with existing nonlinear diffusion techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions, PAMI 12, 629–639 (1990)

    Article  Google Scholar 

  2. Weickert, J.: Anisotropic Diffusion in Image Processing. ECMI Series. Teubner-Verlag, Stuttgart (1998)

    MATH  Google Scholar 

  3. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: SIGGRAPH 1997, pp. 369–378 (1997)

    Google Scholar 

  4. DiCarlo, J.M., Wandell, B.A.: Rendering high dynamic range images. In: Proceedings of the SPIE: Image Sensors, vol. 3965, pp. 392–401 (2000)

    Google Scholar 

  5. Vollmer, M., Möllmann, K.: Infrared Thermal Imaging: Fundamentals, Research and Applications. John Wiley & Sons (2010)

    Google Scholar 

  6. Prokop, M., Galanski, M.: Spiral and Multislice Computed Tomography of the Body. Thieme Verlag (2003)

    Google Scholar 

  7. Kačur, J., Mikula, K.: Slowed anisotropic diffusion. In: ter Haar Romeny, B., Florack, L., Koenderink, J., Viergever, M. (eds.) Scale-Space 1997. LNCS, vol. 1252, pp. 357–360. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  8. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. 13(4), 600–612 (2004)

    Google Scholar 

  9. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1-4), 259–268 (1992)

    Article  MATH  Google Scholar 

  10. Baravdish, G., Svensson, O.: Image reconstruction with p(x)-parabolic equation. In: ICIPE 2011, Orlando Florida (2011)

    Google Scholar 

  11. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: ISPRS Intercommission, Workshop, Interlaken, pp. 149–155 (1987)

    Google Scholar 

  12. Bigun, J., Granlund, G.H.: Optimal Orientation Detection of Linear Symmetry. In: Proceedings of the IEEE First International Conference on Computer Vision, pp. 433–438 (1987)

    Google Scholar 

  13. Felsberg, M.: Autocorrelation-driven diffusion filtering. IEEE Transactions on Image Processing 20(7), 1797–1806 (2011)

    Article  MathSciNet  Google Scholar 

  14. Felsberg, M., Jonsson, E.: Energy tensors: Quadratic, phase invariant image operators. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 493–500. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Åström, F.: Implementation of Targeted Iterative Filtering. In: SSVM 2013 (2013), http://liu.diva-portal.org/smash/record.jsf?pid=diva2:608779

  16. Förstner, W.: Image preprocessing for feature extraction in digital intensity, color and range images. In: Geomatic Method for the Analysis of Data in the Earth Sciences. LNES, vol. 95, pp. 165–189 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Åström, F., Felsberg, M., Baravdish, G., Lundström, C. (2013). Targeted Iterative Filtering. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2013. Lecture Notes in Computer Science, vol 7893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38267-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38267-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38266-6

  • Online ISBN: 978-3-642-38267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics