Advertisement

Targeted Iterative Filtering

  • Freddie Åström
  • Michael Felsberg
  • George Baravdish
  • Claes Lundström
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7893)

Abstract

The assessment of image denoising results depends on the respective application area, i.e. image compression, still-image acquisition, and medical images require entirely different behavior of the applied denoising method. In this paper we propose a novel, nonlinear diffusion scheme that is derived from a linear diffusion process in a value space determined by the application. We show that application-driven linear diffusion in the transformed space compares favorably with existing nonlinear diffusion techniques.

Keywords

Mapping Function Regularization Term Initial Value Problem High Dynamic Range Multiplicative Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions, PAMI 12, 629–639 (1990)CrossRefGoogle Scholar
  2. 2.
    Weickert, J.: Anisotropic Diffusion in Image Processing. ECMI Series. Teubner-Verlag, Stuttgart (1998)zbMATHGoogle Scholar
  3. 3.
    Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: SIGGRAPH 1997, pp. 369–378 (1997)Google Scholar
  4. 4.
    DiCarlo, J.M., Wandell, B.A.: Rendering high dynamic range images. In: Proceedings of the SPIE: Image Sensors, vol. 3965, pp. 392–401 (2000)Google Scholar
  5. 5.
    Vollmer, M., Möllmann, K.: Infrared Thermal Imaging: Fundamentals, Research and Applications. John Wiley & Sons (2010)Google Scholar
  6. 6.
    Prokop, M., Galanski, M.: Spiral and Multislice Computed Tomography of the Body. Thieme Verlag (2003)Google Scholar
  7. 7.
    Kačur, J., Mikula, K.: Slowed anisotropic diffusion. In: ter Haar Romeny, B., Florack, L., Koenderink, J., Viergever, M. (eds.) Scale-Space 1997. LNCS, vol. 1252, pp. 357–360. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. 13(4), 600–612 (2004)Google Scholar
  9. 9.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1-4), 259–268 (1992)zbMATHCrossRefGoogle Scholar
  10. 10.
    Baravdish, G., Svensson, O.: Image reconstruction with p(x)-parabolic equation. In: ICIPE 2011, Orlando Florida (2011)Google Scholar
  11. 11.
    Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: ISPRS Intercommission, Workshop, Interlaken, pp. 149–155 (1987)Google Scholar
  12. 12.
    Bigun, J., Granlund, G.H.: Optimal Orientation Detection of Linear Symmetry. In: Proceedings of the IEEE First International Conference on Computer Vision, pp. 433–438 (1987)Google Scholar
  13. 13.
    Felsberg, M.: Autocorrelation-driven diffusion filtering. IEEE Transactions on Image Processing 20(7), 1797–1806 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Felsberg, M., Jonsson, E.: Energy tensors: Quadratic, phase invariant image operators. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 493–500. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Åström, F.: Implementation of Targeted Iterative Filtering. In: SSVM 2013 (2013), http://liu.diva-portal.org/smash/record.jsf?pid=diva2:608779
  16. 16.
    Förstner, W.: Image preprocessing for feature extraction in digital intensity, color and range images. In: Geomatic Method for the Analysis of Data in the Earth Sciences. LNES, vol. 95, pp. 165–189 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Freddie Åström
    • 1
    • 2
  • Michael Felsberg
    • 1
    • 2
  • George Baravdish
    • 3
  • Claes Lundström
    • 2
    • 4
  1. 1.Computer Vision LaboratoryLinköping UniversitySweden
  2. 2.Center for Medical Image Science and VisualizationLinköping UniversitySweden
  3. 3.Department of Science and TechnologyLinköping UniversitySweden
  4. 4.Sectra ABSweden

Personalised recommendations