Advertisement

Assessment of Gait Symmetry and Gait Normality Using Inertial Sensors: In-Lab and In-Situ Evaluation

  • Anita Sant’ Anna
  • Nicholas Wickström
  • Helene Eklund
  • Roland Zügner
  • Roy Tranberg
Part of the Communications in Computer and Information Science book series (CCIS, volume 357)

Abstract

Quantitative gait analysis is a powerful tool for the assessment of a number of physical and cognitive conditions. Unfortunately, the costs involved in providing in-lab 3D kinematic analysis to all patients is prohibitive. Inertial sensors such as accelerometers and gyroscopes may complement in-lab analysis by providing cheaper gait analysis systems that can be deployed anywhere. The present study investigates the use of inertial sensors to quantify gait symmetry and gait normality. The system was evaluated in-lab, against 3D kinematic measurements; and also in-situ, against clinical assessments of hip-replacement patients. Results show that the system not only correlates well with kinematic measurements but it also corroborates various quantitative and qualitative measures of recovery and health status of hip-replacement patients.

Keywords

Gait analysis Symmetry Normality Accelerometer Gyroscope Inertial sensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, F.M., Rhodes, J.T., Flynn, K.M., Carollo, J.J.: The role of gait analysis in treating gait abnormalities in cerebral palsy. Orthopedic Clinics of North America 41(4), 489–506 (2010)CrossRefGoogle Scholar
  2. 2.
    Salarian, A., Russmann, H., Vingerhoets, F., Dehollain, C., Blanc, Y., Burkhard, P., Aminian, K.: Gait assessment in Parkinson’s disease: Toward an ambulatory system for long-term monitoring. IEEE Transactions on Biomedical Engineering 51(8), 1434–1443 (2004)CrossRefGoogle Scholar
  3. 3.
    Cruz, T.H., Dhaher, Y.Y.: Evidence of abnormal lower-limb torque coupling after stroke: An isometric study supplemental materials and methods. Stroke 39(1), 139–147 (2008)CrossRefGoogle Scholar
  4. 4.
    Benedetti, M., Montanari, E., Catani, F., Vicenzi, G., Leardini, A.: Pre-operative planning and gait analysis of total hip replacement following hip fusion. Computer Methods and Programs in Biomedicine 70(3), 215–221 (2003)CrossRefGoogle Scholar
  5. 5.
    Toro, B., Nester, C., Farren, P.: A review of observational gait assessment in clinical practice. Physiotherapy Theory and Practice 19(3), 137–149 (2003)CrossRefGoogle Scholar
  6. 6.
    Embrey, D.G., Yates, L., Mott, D.H.: Effects of neuro-developmental treatment and orthoses on knee flexion during gait: A single-subject design. Physical Therapy 70(10), 626–637 (1990)Google Scholar
  7. 7.
    Brown, C., Hillman, S., Richardson, A., Herman, J., Robb, J.: Reliability and validity of the visual gait assessment scale for children with hemiplegic cerebral palsy when used by experienced and inexperienced observers. Gait & Posture 27(4), 648–652 (2008)CrossRefGoogle Scholar
  8. 8.
    Ong, A., Hillman, S., Robb, J.: Reliability and validity of the edinburgh visual gait score for cerebral palsy when used by inexperienced observers. Gait & Posture 28(2), 323–326 (2008)CrossRefGoogle Scholar
  9. 9.
    Kempen, J., de Groot, V., Knol, D., Polman, C., Lankhorst, G., Beckerman, H.: Community walking can be assessed using a 10 metre timed walk test. Multiple Sclerosis Journal 17(8), 980–990 (2011)CrossRefGoogle Scholar
  10. 10.
    Nordin, E., Lindelöf, N., Rosendahl, E., Jensen, J., Lundin-Olsson, L.: Prognostic validity of the timed up-and-go test, a modified get-up-and-go test, staff’s global judgement and fall history in evaluating fall risk in residential care facilities. Age and Ageing 37(4), 442–448 (2008)CrossRefGoogle Scholar
  11. 11.
    Potter, J.M., Evans, A.L., Duncan, G.: Gait speed and activities of daily living function in geriatric patients. Archives of Physical Medicine and Rehabilitation 76(11), 997–999 (1995)CrossRefGoogle Scholar
  12. 12.
    Cesari, M., Kritchevsky, S.B., Penninx, B.W.H.J., Nicklas, B.J., Simonsick, E.M., Newman, A.B., Tylavsky, F.A., Brach, J.S., Satterfield, S., Bauer, D.C., Visser, M., Rubin, S.M., Harris, T.B., Pahor, M.: Prognostic value of usual gait speed in well-functioning older people - results from the health, aging and body composition study. Journal of the American Geriatrics Society 53(10), 1675–1680 (2005)CrossRefGoogle Scholar
  13. 13.
    Buchner, D.M., Larson, E.B., Wagner, E.H., Koepsell, T.D., De Lateur, B.J.: Evidence for a non-linear relationship between leg strength and gait speed. Age and Ageing 25(5), 386–391 (1996)CrossRefGoogle Scholar
  14. 14.
    Russell, E., Braun, B., Hamill, J.: Does stride length influence metabolic cost and biomechanical risk factors for knee osteoarthritis in obese women? Clinical Biomechanics 25(5), 438–443 (2010)CrossRefGoogle Scholar
  15. 15.
    Crenshaw, S.J., Richards, J.G.: A method for analyzing joint symmetry and normalcy, with an application to analyzing gait. Gait & Posture 24(4), 515–521 (2006)CrossRefGoogle Scholar
  16. 16.
    Schutte, L.M., Narayanan, U., Stout, J.L., Selber, P., Gage, J.R., Schwartz, M.H.: An index for quantifying deviations from normal gait. Gait & Posture 11(1), 25–31 (2000)CrossRefGoogle Scholar
  17. 17.
    Schwartz, M.H., Rozumalski, A.: The gait deviation index: A new comprehensive index of gait pathology. Gait & Posture 28(3), 351–357 (2008)CrossRefGoogle Scholar
  18. 18.
    Baker, R., McGinley, J.L., Schwartz, M.H., Beynon, S., Rozumalski, A., Graham, H.K., Tirosh, O.: The gait profile score and movement analysis profile. Gait & Posture 30(3), 265–269 (2009)CrossRefGoogle Scholar
  19. 19.
    Beynon, S., McGinley, J.L., Dobson, F., Baker, R.: Correlations of the gait profile score and the movement analysis profile relative to clinical judgments. Gait & Posture 32(1), 129–132 (2010)CrossRefGoogle Scholar
  20. 20.
    Sadeghi, H., Allard, P., Prince, F., Labelle, H.: Symmetry and limb dominance in able-bodied gait: A review. Gait & Posture 12(1), 34–45 (2000)CrossRefGoogle Scholar
  21. 21.
    Zifchock, R., Davis, I., Higginson, J., Royer, T.: The symmetry angle: A novel, robust method of quantifying asymmetry. Gait & Posture 27(4), 622–627 (2008)CrossRefGoogle Scholar
  22. 22.
    Moe-Nilssen, R., Helbostad, J.L.: Estimation of gait cycle characteristics by trunk accelerometry. Journal of Biomechanics 37(1), 121–126 (2004)CrossRefGoogle Scholar
  23. 23.
    Gouwanda, D., Senanayake, A.S.M.N.: Identifying gait asymmetry using gyroscopes-a cross-correlation and normalized symmetry index approach. Journal of Biomechanics 44(5), 972–978 (2011)CrossRefGoogle Scholar
  24. 24.
    Sant’Anna, A., Wickström, N.: A symbol-based approach to gait analysis from acceleration signals: Identification and detection of gait events and a new measure of gait symmetry. IEEE Transactions on Information Technology in Biomedicine 14(5), 1180–1187 (2010)CrossRefGoogle Scholar
  25. 25.
    Sant’Anna, A., Salarian, A., Wickström, N.: A new measure of movement symmetry in early parkinson’s disease patients using symbolic processing of inertial sensor data. IEEE Transaction on biomedical Engineering 58(7) (2011)Google Scholar
  26. 26.
    Tranberg, R., Saari, T., Zügner, R., Kärrholm, J.: Simultaneous measurements of knee motion using an optical tracking system and radiostereometric analysis (RSA). Acta Orthopaedica 82(2), 171–176 (2011)CrossRefGoogle Scholar
  27. 27.
    DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44(3), 837–845 (1988)zbMATHCrossRefGoogle Scholar
  28. 28.
    McGraw, K.O., Wong, S.P.: Forming inferences about some intraclass correlation coefficients. Psychological Methods 1, 30–46 (1996)CrossRefGoogle Scholar
  29. 29.
    Kennedy, D., Stratford, P., Wessel, J., Gollish, J., Penney, D.: Assessing stability and change of four performance measures: a longitudinal study evaluating outcome following total hip and knee arthroplasty. BMC Musculoskeletal Disorders 6(1), 3 (2005)CrossRefGoogle Scholar
  30. 30.
    Aminian, K., Rezakhanlou, K., De Andres, E., Fritsch, C., Leyvraz, P.F., Robert, P.: Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty. Medical and Biological Engineering and Computing 37, 686–691 (1999)CrossRefGoogle Scholar
  31. 31.
    Macnicol, M., McHardy, R., Chalmers, J.: Exercise testing before and after hip arthroplasty. Journal of Bone and Joint Surgery - British 62-B(3), 326–331 (1980)Google Scholar
  32. 32.
    Palombaro, K.M., Craik, R.L., Mangione, K.K., Tomlinson, J.D.: Determining meaningful changes in gait speed after hip fracture. Physical Therapy 86(6), 809–816 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anita Sant’ Anna
    • 1
  • Nicholas Wickström
    • 1
  • Helene Eklund
    • 2
  • Roland Zügner
    • 3
  • Roy Tranberg
    • 3
  1. 1.Intelligent Systems LabHalmstad UniversitySweden
  2. 2.Center for Person-Centered CareSahlgrenska AcademySweden
  3. 3.Department of OrthopedicsSahlgrenska AcademySweden

Personalised recommendations