Parallel GPGPU Evaluation of Small Angle X-Ray Scattering Profiles in a Markov Chain Monte Carlo Framework

  • Lubomir D. Antonov
  • Christian Andreetta
  • Thomas Hamelryck
Part of the Communications in Computer and Information Science book series (CCIS, volume 357)


Inference of protein structure from experimental data is of crucial interest in science, medicine and biotechnology. Low-resolution methods, such as small angle X-ray scattering (SAXS), play a major role in investigating important biological questions regarding the structure of proteins in solution.

To infer protein structure from SAXS data, it is necessary to calculate the expected experimental observations given a protein structure, by making use of a so-called forward model. This calculation needs to be performed many times during a conformational search. Therefore, computational efficiency directly determines the complexity of the systems that can be explored.

We present an efficient implementation of the forward model for SAXS with full hardware utilization of Graphics Processor Units (GPUs). The proposed algorithm is orders of magnitude faster than an efficient CPU implementation, and implements a caching procedure employed in the partial forward model evaluations within a Markov chain Monte Carlo framework.


SAXS GPU GPGPU MCMC Protein Structure Determination OpenCL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181, 223–230 (1973)CrossRefGoogle Scholar
  2. 2.
    Zheng, W., Doniach, S.: Fold recognition aided by constraints from small angle X-ray scattering data. Protein Eng. Des. Sel. 18, 209–219 (2005)CrossRefGoogle Scholar
  3. 3.
    Toft, K., Vestergaard, B., Nielsen, S., Snakenborg, D.: High-throughput small angle X-ray scattering from proteins in solution using a microfluidic front-end. Anal. Chem. 80, 3648–3654 (2008)CrossRefGoogle Scholar
  4. 4.
    Hura, G.L., Menon, A.L., Hammel, M., Rambo, R.P., Poole, F.L., Tsutakawa, S.E., Jenney, F.E., Classen, S., Frankel, K.A., Hopkins, R.C., Jae Yang, S., Scott, J.W., Dillard, B.D., Adams, M.W.W., Tainer, J.A.: Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat. Methods 6, 606–614 (2009)CrossRefGoogle Scholar
  5. 5.
    Debye, P.: Zerstreuung von röntgenstrahlen. Ann. Phys. 351, 809–823 (1915)CrossRefGoogle Scholar
  6. 6.
    Chacon, P., Moran, F., Diaz, J., Pantos, E., Andreu, J.: Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. Biophys. J. 74, 2760–2775 (1998)CrossRefGoogle Scholar
  7. 7.
    Svergun, D., Petoukhov, M., Koch, M.: Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946–2953 (2001)CrossRefGoogle Scholar
  8. 8.
    Tjioe, E., Heller, W.: ORNL_SAS: software for calculation of small-angle scattering intensities of proteins and protein complexes. J. Appl. Crystallogr. 40, 782–785 (2007)CrossRefGoogle Scholar
  9. 9.
    Förster, F., Webb, B., Krukenberg, K., Tsuruta, H.: Integration of small-angle X-ray scattering data into structural modeling of proteins and their assemblies. J. Mol. Biol. 382, 1089–1106 (2008)CrossRefGoogle Scholar
  10. 10.
    Svergun, D.I., Stuhrmann, H.B.: New developments in direct shape determination from small-angle scattering. 1. Theory and model calculations. Acta Crystallogr. A 47, 736–744 (1991)CrossRefGoogle Scholar
  11. 11.
    Koch, M., Vachette, P., Svergun, D.: Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q Rev. Biophys. 36, 147–227 (2003)CrossRefGoogle Scholar
  12. 12.
    Boomsma, W., Mardia, K., Taylor, C., Ferkinghoff-Borg, J., Krogh, A., Hamelryck, T.: A generative, probabilistic model of local protein structure. Proc. Natl. Acad. Sci. U S A 105, 8932–8937 (2008)CrossRefGoogle Scholar
  13. 13.
    Harder, T., Boomsma, W., Paluszewski, M., Frellsen, J., Johansson, K.E., Hamelryck, T.: Beyond rotamers: a generative, probabilistic model of side chains in proteins. BMC Bioinformatics 11, 306 (2010)CrossRefGoogle Scholar
  14. 14.
    Olsson, S., Boomsma, W., Frellsen, J., Bottaro, S., Harder, T., Ferkinghoff-Borg, J., Hamelryck, T.: Generative probabilistic models extend the scope of inferential structure determination. J. Magn. Reson. 213, 182–186 (2011)CrossRefGoogle Scholar
  15. 15.
    Stovgaard, K., Andreetta, C., Ferkinghoff-Borg, J., Hamelryck, T.: Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models. BMC Bioinformatics 11, 429 (2010)CrossRefGoogle Scholar
  16. 16.
    Levitt, M.: Nature of the protein universe. Proc. Natl. Acad. Sci. U S A 106, 11079–11084 (2009)CrossRefGoogle Scholar
  17. 17.
    Madl, T., Gabel, F., Sattler, M.: NMR and small-angle scattering-based structural analysis of protein complexes in solution. J. Struct. Biol., 1–11 (2010)Google Scholar
  18. 18.
    Göddeke, D., Strzodka, R.: Cyclic reduction tridiagonal solvers on GPUs applied to mixed precision multigrid. IEEE Transactions on Parallel and Distributed Systems 22, 22–32 (2011), doi:10.1109/TPDS.2010.61CrossRefGoogle Scholar
  19. 19.
    Stone, J.E., Gohara, D., Shi, G.: OpenCL: A parallel programming standard for heterogeneous computing systems. Computing in Science and Engineering 12, 66–73 (2010)Google Scholar
  20. 20.
    Schrödinger, L.: The PyMOL molecular graphics system, version 1.3r1 (2010)Google Scholar
  21. 21.
    Svergun, D., Barberato, C., Koch, M.: CRYSOL - a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995)CrossRefGoogle Scholar
  22. 22.
    Higham, N.J.: The accuracy of floating point summation. SIAM J. Sci. Comput. 14, 783–799 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Borg, M., Mardia, K., Boomsma, W., Frellsen, J., Harder, T., Stovgaard, K., Ferkinghoff-Borg, J., Røgen, P., Hamelryck, T.: A probabilistic approach to protein structure prediction: PHAISTOS in CASP9. In: Gusnanto, A., Mardia, K., Fallaize, C. (eds.) LASR2009 - Statistical Tools for Challenges in Bioinformatics, pp. 65–70. Leeds University Press, Leeds (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lubomir D. Antonov
    • 1
  • Christian Andreetta
    • 1
  • Thomas Hamelryck
    • 1
  1. 1.The Bioinformatics Section, Department of BiologyUniversity of CopenhagenDenmark

Personalised recommendations