Advertisement

Single Tandem Halving by Block Interchange

  • Antoine Thomas
  • Aïda Ouangraoua
  • Jean-Stéphane Varré
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 357)

Abstract

We address the problem of finding the minimal number of block interchanges required to transform a duplicated unilinear genome into a single tandem duplicated unilinear genome. We provide a formula for the distance as well as a polynomial time algorithm for the sorting problem. This is the extended version of [1].

Keywords

Circular Chromosome Linear Chromosome Natural Graph Unsigned Integer Block Interchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thomas, A., Ouangraoua, A., Varré, J.S.: Genome halving by block interchange. In: BIOINFORMATICS 2012, Third International Conference on Bioinformatics Models, Methods and Algorithms, Vilamoura, Portugal, February 1-4 (2012)Google Scholar
  2. 2.
    Christie, D.A.: Sorting permutations by block-interchanges. Inf. Process. Lett. 60, 165–169 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lin, Y.C., Lu, C.L., Chang, H.Y., Tang, C.Y.: An efficient algorithm for sorting by block-interchanges and its application to the evolution of vibrio species. Journal of Computational Biology 12, 102–112 (2005)CrossRefGoogle Scholar
  4. 4.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346 (2005)CrossRefGoogle Scholar
  5. 5.
    El-Mabrouk, N., Nadeau, J.H., Sankoff, D.: Genome Halving. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 235–250. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM J. Comput. 32, 754–792 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal Genome Median and Halving Problems. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 1–13. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Warren, R., Sankoff, D.: Genome halving with double cut and join. In: Brazma, A., Miyano, S., Akutsu, T. (eds.) Proceedings of APBC 2008. Advances in Bioinformatics and Computational Biology, vol. 6, pp. 231–240. Imperial College Press (2008)Google Scholar
  9. 9.
    Mixtacki, J.: Genome Halving under DCJ Revisited. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 276–286. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Kováč, J., Braga, M.D.V., Stoye, J.: The Problem of Chromosome Reincorporation in DCJ Sorting and Halving. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 13–24. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Antoine Thomas
    • 1
  • Aïda Ouangraoua
    • 1
  • Jean-Stéphane Varré
    • 1
  1. 1.LIFL, UMR 8022 CNRSUniversité Lille 1, INRIA LilleVilleneuve d’AscqFrance

Personalised recommendations