Advertisement

Perspectives for Sketching Fluids Using Sketch-Based Techniques and Gradient Vector Flow for 3D LBM Initialization

  • Sicilia Judice
  • José Guilherme Mayworm
  • Pedro Azevedo
  • Gilson Giraldi
Part of the Communications in Computer and Information Science book series (CCIS, volume 359)

Abstract

This work is primarily concerned with sketch-based techniques to convert drawing input from the user into an initial fluid configuration. The application of sketching techniques is proposed in order to enable the user to freely draw the initial state of the fluid flow. This proposal has several issues which are discussed in this work. A combination of sketching techniques and Gradient Vector Flow (GVF) is explored to obtain a smooth initialization for the simulation of 2D/3D fluids using a Lattice Boltzmann Method (LBM). The LBM is based on the fundamental idea of constructing simplified kinetic models, which incorporates the essential physics of microscopic processes so that the macroscopic averaged properties satisfy macroscopic equations.

Keywords

Fluid simulation Lattice-Boltzmann method Gradient vector flow Sketching modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing - Partial Differential Equations and the Calculus of Variations. Springer, New York (2002)zbMATHGoogle Scholar
  2. 2.
    Bærentzen, J.A., Christensen, N.J.: Volume Sculpting using the Level-Set Method. In: Proceedings of the Shape Modeling International, p. 175. IEEE Computer Society (2002)Google Scholar
  3. 3.
    Buick, J.M., Easson, W.J., Greated, C.A.: Numerical Simulation of Internal Gravity Waves using a Lattice Gas Model. International Journal for Numerical Methods in Fluids 26, 657–676 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Chen, S., Doolen, G.D.: Lattice Boltzmann Method for Fluid Flows. Annual Review of Fluid Mechanics 30, 329–364 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chopard, B., Luthi, P., Masselot, A.: Cellular Automata and Lattice Boltzmann techniques: an approach to model and simulate complex systems. Advances in Physics (1998)Google Scholar
  6. 6.
    Cook, M.T., Agah, A.: A Survey of Sketch-based 3D Modeling Techniques. Interact. Comput. 21, 201–211 (2009)CrossRefGoogle Scholar
  7. 7.
    Cruz, L., Velho, L.: A sketch on sketch-based interfaces and modeling. In: Graphics, Patterns and Images Tutorials (SIBGRAPI-T), pp. 22–33 (2010)Google Scholar
  8. 8.
    Foster, N., Metaxas, D.: Modeling the Motion of a Hot, Turbulent Gas. In: ACM SIGGRAPH, pp. 181–188 (1997)Google Scholar
  9. 9.
    Higuera, F.J., Jimenez, J., Succi, S.: Boltzmann approach to Lattice Gas simulations. Europhys. Lett. 9 (1989)Google Scholar
  10. 10.
    Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy - a Sketching Interface for 3D Freeform Design. In: ACM SIGGRAPH Courses, New York (2007)Google Scholar
  11. 11.
    Judice, S.F., Giraldi, G.A.: SKETCHING FLUID FLOWS - Combining Sketch-based Techniques and Gradient Vector Flow for Lattice-Boltzmann Initialization. In: International Conference on Computer Graphics Theory and Applications, GRAPP, pp. 328–337 (2012)Google Scholar
  12. 12.
    McNamara, G.R., Zanetti, G.: Use of the Boltzmann Equation to Simulate Lattice-Gas Automata. Phys. Rev. Lett. 61, 2332–2335 (1988)CrossRefGoogle Scholar
  13. 13.
    Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point-based Animation of Elastic, Plastic and Melting Objects. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 141–151 (2004)Google Scholar
  14. 14.
    Müller, M., Schirm, S., Teschner, M.: Interactive Blood Simulation for Virtual Surgery based on Smoothed Particle Hydrodynamics. Technol. Health Care 12, 25–31 (2004)Google Scholar
  15. 15.
    Rothman, D.H., Zaleski, S.: Lattice-Gas Models of Phase Separation - Interface, Phase Transition and Multiphase Flows. Rev. Mod. Phys. 66, 1417–1479 (1994)CrossRefGoogle Scholar
  16. 16.
    Schroeder, D., Coffey, D., Keefe, D.: Drawing with the Flow - a Sketch-based Interface for Illustrative Visualization of 2D Vector Fields. In: Proceedings of the Seventh Sketch-Based Interfaces and Modeling Symposium, pp. 49–56. Eurographics Association, Aire-la-Ville (2010)Google Scholar
  17. 17.
    Stam, J.: Flows on Surfaces of Arbitrary Topology. In: ACM SIGGRAPH, pp. 724–731 (2003)Google Scholar
  18. 18.
    Sutherland, I.E.: Sketchpad - a Man-Machine Graphical Communication System. In: Proceedings of the SHARE Design Automation Workshop, pp. 6.329–6.346. ACM, New York (1964)Google Scholar
  19. 19.
    Thorne, M., Burke, D., van de Panne, M.: Motion Doodles - an Interface for Sketching Character Motion. ACM Trans. Graph. 23, 424–431 (2004)CrossRefGoogle Scholar
  20. 20.
    Thürey, N.: A Lattice Boltzmann Method for Single-Phase Free Surface Flows in 3D. Master’s Thesis, Dept. of Computer Science 10. University of Erlangen-Nuremberg (2003)Google Scholar
  21. 21.
    Varley, P.A.C., Martin, R.R., Suzuki, H.: Can Machines Interpret Line Drawings? In: EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2004)Google Scholar
  22. 22.
    Wei, X., Member, S., Li, W., Mueller, K., Kaufman, A.E.: The Lattice Boltzmann Method for Simulating Gaseous Phenomena. IEEE Transactions on Visualization and Computer Graphics 10, 164–176 (2004)CrossRefGoogle Scholar
  23. 23.
    Williams, L.: 3D Paint. ACM SIGGRAPH Comput. Graph. 24, 225–233 (1990)CrossRefGoogle Scholar
  24. 24.
    Witting, P.: Computational Fluid Dynamics in a Traditional Animation Enviroment. In: ACM SIGGRAPH, pp. 129–136 (1999)Google Scholar
  25. 25.
    Xu, C., Prince, J.L.: Gradient Vector Flow: A new External Force for Snakes. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 66–71 (1997)Google Scholar
  26. 26.
    Xu, C., Prince, J.L.: Snakes, Shapes, and Gradient Vector Flow. IEEE Transactions on Image Processing 7, 359–369 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Xu, C., Prince, J.L.: Gradient Vector Flow Deformable Models. In: Bankman, I. (ed.) Handbook of Medical Imaging. Academic Press (September 2000)Google Scholar
  28. 28.
    Zeleznik, R.C., Herndon, K.P., Hughes, J.F.: Sketch - an Interface for Sketching 3D Scenes. In: ACM SIGGRAPH Courses, New York (2006)Google Scholar
  29. 29.
    Zhu, B., Iwata, M., Haraguchi, R., Ashihara, T., Umetani, N., Igarashi, T., Nakazawa, K.: Sketchbased Dynamic Illustration of Fluid Systems. SIGGRAPH ASIA Technical Papers, Hong Kong (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sicilia Judice
    • 1
    • 2
  • José Guilherme Mayworm
    • 1
    • 2
  • Pedro Azevedo
    • 1
    • 2
  • Gilson Giraldi
    • 1
    • 2
  1. 1.National Laboratory for Scientific ComputingPetrópolisBrazil
  2. 2.Faculty of Technical Education of the State of Rio de JaneiroPetrópolisBrazil

Personalised recommendations