Advertisement

Artifact-Free Decompression and Zooming of JPEG Compressed Images with Total Generalized Variation

  • Kristian Bredies
  • Martin Holler
Part of the Communications in Computer and Information Science book series (CCIS, volume 359)

Abstract

We propose a new model for the improved reconstruction and zooming of JPEG (Joint Photographic Experts Group) images. In the reconstruction process, given a JPEG compressed image, our method first determines the set of possible source images and then specifically chooses one of these source images satisfying additional regularity properties. This is realized by employing the recently introduced Total Generalized Variation (TGV) as regularization term and solving a constrained minimization problem. Data fidelity is modeled by the composition of a color-subsampling and a discrete cosine transformation operator. Furthermore, extending the notion of data set by allowing unconstrained intervals, the method facilitates optional magnification of the original image. In order to obtain an optimal solution numerically, we propose a primal-dual algorithm. We have developed a parallel implementation of this algorithm for the CPU and the GPU, using OpenMP and Nvidia’s Cuda, respectively. Finally, experiments have been performed, confirming a good visual reconstruction quality as well as the suitability for real-time application.

Keywords

Artifact-free JPEG decompression Total generalized variation Image reconstruction Image zooming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM Journal on Imaging Sciences 3, 492–526 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Nosratinia, A.: Enhancement of JPEG-compressed images by re-application of JPEG. The Journal of VLSI Signal Processing 27, 69–79 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Singh, S., Kumar, V., Verma, H.K.: Reduction of blocking artifacts in JPEG compressed images. Digital Signal Processing 17, 225–243 (2007)CrossRefGoogle Scholar
  4. 4.
    Shen, M.Y., Kuo, C.C.J.: Review of postprocessing techniques for compression artifact removal. Journal of Visual Communication and Image Representation 9, 2–14 (1998)CrossRefGoogle Scholar
  5. 5.
    Kartalov, T., Ivanovski, Z.A., Panovski, L., Karam, L.J.: An adaptive POCS algorithm for compression artifacts removal. In: 9th International Symposium on Signal Processing and Its Applications, pp. 1–4 (2007)Google Scholar
  6. 6.
    Weerasinghe, C., Liew, A.W.C., Yan, H.: Artifact reduction in compressed images based on region homogeneity constraints using the projection onto convex sets algorithm. IEEE Transactions on Circuits and Systems for Video Technology 12, 891–897 (2002)CrossRefGoogle Scholar
  7. 7.
    Zou, J.J., Yan, H.: A deblocking method for BDCT compressed images based on adaptive projections. IEEE Transactions on Circuits and Systems for Video Technology 15, 430–435 (2005)CrossRefGoogle Scholar
  8. 8.
    Bredies, K., Holler, M.: A total variation–based JPEG decompression model. SIAM Journal on Imaging Sciences 5, 366–393 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Alter, F., Durand, S., Froment, J.: Adapted total variation for artifact free decompression of JPEG images. Journal of Mathematical Imaging and Vision 23, 199–211 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhong, S.: Image coding with optimal reconstruction. In: International Conference on Image Processing, vol. 1, pp. 161–164 (1997)Google Scholar
  11. 11.
    Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61, 633–658 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Caselles, V., Chambolle, A., Novaga, M.: The discontinuity set of solutions of the TV denoising problem and some extensions. Multiscale Model. Simul. 6, 879–894 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Ring, W.: Structural properties of solutions to total variaton regularization problems. M2AN Math. Model. Numer. Anal. 34, 799–810 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Wallace, G.K.: The JPEG still picture compression standard. Commun. ACM 34, 30–44 (1991)CrossRefGoogle Scholar
  15. 15.
    Bredies, K., Kunisch, K., Valkonen, T.: Properties of L 1 − TGV 2: The one-dimensional case. Journal of Mathematical Analysis and Applications 398(1), 438–454 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40, 120–145 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Bredies, K.: Recovering PIECEWISE smooth multichannel images by minimization of convex functionals with total generalized variation penalty. SFB Report 2012-006, Institute of Mathematics and Scientific Computing, University of Graz (2012)Google Scholar
  18. 18.
    OpenMP Architecture Review Board: Openmp application program interface, version 3.1 (2011), http://www.openmp.org
  19. 19.
    NVIDIA: NVIDIA CUDA programming guide 2.0. NVIDIA Cooperation (2008)Google Scholar
  20. 20.
    Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings of the IEEE 93, 216–231 (2005); Special issue on Program Generation, Optimization, and Platform AdaptationGoogle Scholar
  21. 21.
  22. 22.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kristian Bredies
    • 1
  • Martin Holler
    • 1
  1. 1.Institute of Mathematics and Scientific ComputingUniversity of GrazGrazAustria

Personalised recommendations