Scaffold Hunter: Facilitating Drug Discovery by Visual Analysis of Chemical Space

  • Karsten Klein
  • Nils Kriege
  • Petra Mutzel
Part of the Communications in Computer and Information Science book series (CCIS, volume 359)


The search for a new drug to cure a particular disease involves to find a chemical compound that influences a corresponding biological process, e.g., by inhibiting or activating an involved biological target molecule. A potential drug candidate however does not only need to show a sufficient amount of biological activity, but also needs to adhere to additional rules that define the basic limits of druglikeness, including for example restrictions regarding solubility and molecular weight. The sheer size of the search space, i.e., the chemical space that contains the available compounds, the large number of potentially relevant data annotations per compound, the incomplete knowledge on those properties, and the complex relation between the molecular properties and the actual effects in a living organism, complicate the search and may turn the discovery process into a tedious challenge. We describe Scaffold Hunter, an interactive software tool for the exploration and analysis of chemical compound databases. Scaffold Hunter allows to explore the chemical space spanned by a compound database, fosters intuitive recognition of complex structural and bioactivity relationships, and helps to identify interesting compound classes with a desired bioactivity. Thus, the tool supports chemists during the complex and time-consuming drug discovery process to gain additional knowledge and to focus on regions of interest, facilitating the search for promising drug candidates.


Scaffold tree Chemical space Chemical compound data Integrative visualization Interactive exploration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IMI: Innovative Medicines Initiative 2nd Call, Knowledge Management – Open Pharmacological Space (2009)Google Scholar
  2. 2.
    OpenWetWare (2012),
  3. 3.
    Schuffenhauer, A., Ertl, P., Roggo, S., Wetzel, S., Koch, M.A., Waldmann, H.: The Scaffold Tree - Visualization of the Scaffold Universe by Hierarchical Scaffold Classification. J. Chem. Inf. Model. 47, 47–58 (2007)CrossRefGoogle Scholar
  4. 4.
    Wetzel, S., Klein, K., Renner, S., Rauh, D., Oprea, T.I., Mutzel, P., Waldmann, H.: Interactive exploration of chemical space with Scaffold Hunter. Nat. Chem. Biol. 5, 581–583 (2009)CrossRefGoogle Scholar
  5. 5.
    Irwin, J.J.: Staring off into chemical space. Nat. Chem. Biol. 5, 536–537 (2009)CrossRefGoogle Scholar
  6. 6.
    Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner. In: Studies in Classification, Data Analysis, and Knowledge Organization, GfKL 2007 (2007)Google Scholar
  7. 7.
    Schuffenhauer, A., Varin, T.: Rule-Based Classification of Chemical Structures by Scaffold. Molecular Informatics 30, 646–664 (2011)Google Scholar
  8. 8.
    Herhaus, C., Karch, O., Bremm, S., Rippmann, F.: MolWind - mapping molecule spaces to geospatial worlds. Chemistry Central Journal 3, 32 (2009)CrossRefGoogle Scholar
  9. 9.
    Lounkine, E., Wawer, M., Wassermann, A.M., Bajorath, J.: SARANEA: A freely available program to mine structure-activity and structure-selectivity relationship information in compound data sets. J. Chem. Inf. Model. 50, 68–78 (2010)CrossRefGoogle Scholar
  10. 10.
    Garcia-Serna, R., Ursu, O., Oprea, T.I., Mestres, J.: iPHACE: integrative navigation in pharmacological space. Bioinformatics 26(7), 985–986 (2010)CrossRefGoogle Scholar
  11. 11.
    Agrafiotis, D.K., Wiener, J.J.M.: Scaffold Explorer: An Interactive Tool for Organizing and Mining Structure-Activity Data Spanning Multiple Chemotypes. Journal of Medicinal Chemistry 53, 5002–5011 (2010)CrossRefGoogle Scholar
  12. 12.
    Wetzel, S., Wilk, W., Chammaa, S., Sperl, B., Roth, A.G., Yektaoglu, A., Renner, S., Berg, T., Arenz, C., Giannis, A., Oprea, T.I., Rauh, D., Kaiser, M., Waldmann, H.: A Scaffold-Tree-Merging Strategy for Prospective Bioactivity Annotation of γ-Pyrones. Angew. Chem. Int. Ed. 49, 3666–3670 (2010)CrossRefGoogle Scholar
  13. 13.
    Bon, R., Waldmann, H.: Bioactivity-Guided Navigation of Chemical Space. Acc. Chem. Res. 43, 1103–1114 (2010)CrossRefGoogle Scholar
  14. 14.
    Bederson, B.B., Grosjean, J., Meyer, J.: Toolkit design for interactive structured graphics. IEEE Trans. Softw. Eng. 30(8), 535–546 (2004)CrossRefGoogle Scholar
  15. 15.
    Downs, G.M., Barnard, J.M.: Clustering Methods and Their Uses in Computational Chemistry, pp. 1–40. John Wiley & Sons, Inc. (2003)Google Scholar
  16. 16.
    Maggiora, G.M., Shanmugasundaram, V.: Molecular similarity measures. Methods in Molecular Biology 672, 39–100 (2011)CrossRefGoogle Scholar
  17. 17.
    JChemPaint chemical 2D structure editor (2012),
  18. 18.
    Klein, K., Kriege, N., Mutzel, P.: CT-Index: Fingerprint-based Graph Indexing Combining Cycles and Trees. In: IEEE 27th International Conference on Data Engineering (ICDE), pp. 1115–1126 (2011)Google Scholar
  19. 19.
    Varin, T., Schuffenhauer, A., Ertl, P., Renner, S.: Mining for Bioactive Scaffolds with Scaffold Networks: Improved Compound Set Enrichment from Primary Screening Data. J. Chem. Inf. Model. 51, 1528–1538 (2011)CrossRefGoogle Scholar
  20. 20.
    The Open Graph Drawing Framework (2012),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karsten Klein
    • 1
  • Nils Kriege
    • 2
  • Petra Mutzel
    • 2
  1. 1.School of Information TechnologiesThe University of SydneyAustralia
  2. 2.Department of Computer ScienceTechnische Universität DortmundGermany

Personalised recommendations