Space-Time Flow Visualization of Dynamics in 2D Lagrangian Coherent Structures

  • Filip Sadlo
  • Sven Bachthaler
  • Carsten Dachsbacher
  • Daniel Weiskopf
Part of the Communications in Computer and Information Science book series (CCIS, volume 359)

Abstract

Stretching and compression in tangent directions of Lagrangian coherent structures (LCS) are of particular interest in the vicinity of hyperbolic trajectories and play a key role in turbulence and mixing. Since integration of hyperbolic trajectories is difficult, we propose to visualize them in 2D time-dependent vector fields by space-time intersection curves of LCS. LCS are present as ridge lines in the 2D finite-time Lyapunov exponent (FTLE) field and as ridge surfaces in its 3D space-time domain. We extract these ridge surfaces from the forward and reverse FTLE field and intersect them. Due to their advection property, LCS become stream surfaces in 3D space-time. This allows us to use line integral convolution on the LCS to visualize their intrinsic dynamics, in particular around hyperbolic trajectories. To reduce occlusion, we constrain the LCS to space-time bands around their intersection curves. We evaluate our approach using synthetic, simulated, and measured vector fields.

Keywords

Flow visualization Lagrangian coherent structures Hyperbolic trajectories 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Helman, J., Hesselink, L.: Representation and display of vector field topology in fluid flow data sets. IEEE Computer 22, 27–36 (1989)CrossRefGoogle Scholar
  2. 2.
    Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D Nonlinear Phenomena 149, 248–277 (2001)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Lekien, F., Coulliette, C., Mariano, A.J., Ryan, E.H., Shay, L.K., Haller, G., Marsden, J.E.: Pollution release tied to invariant manifolds: A case study for the coast of Florida. Physica D Nonlinear Phenomena 210, 1–20 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Sadlo, F., Üffinger, M., Ertl, T., Weiskopf, D.: On the finite–time scope for computing Lagrangian coherent structures from Lyapunov exponents. In: Topological Methods in Data Analysis and Visualization II, pp. 269–281. Springer (2012)Google Scholar
  5. 5.
    Sadlo, F., Rigazzi, A., Peikert, R.: Time–dependent visualization of Lagrangian coherent structures by grid advection. In: Topological Methods in Data Analysis and Visualization, pp. 151–165. Springer (2011)Google Scholar
  6. 6.
    Sadlo, F., Weiskopf, D.: Time–dependent 2D vector field topology: An approach inspired by Lagrangian coherent structures. Comp. Graph. Forum 29, 88–100 (2010)CrossRefGoogle Scholar
  7. 7.
    Üffinger, M., Sadlo, F., Ertl, T.: A Time-Dependent Vector Field Topology Based on Streak Surfaces. IEEE Transactions on Visualization and Computer Graphic 19, 379–392 (2013)CrossRefGoogle Scholar
  8. 8.
    Wiebel, A., Tricoche, X., Schneider, D., Jaenicke, H., Scheuermann, G.: Generalized streak lines: Analysis and visualization of boundary induced vortices. IEEE Transactions on Visualization and Computer Graphics 13, 1735–1742 (2007)CrossRefGoogle Scholar
  9. 9.
    Haller, G.: Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos 10, 99–108 (2000)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Ide, K., Small, D., Wiggins, S.: Distinguished hyperbolic trajectories in time-dependent fluid flows: Analytical and computational approach for velocity fields defined as data sets. Nonlinear Processes in Geophysics 9, 237–263 (2002)CrossRefGoogle Scholar
  11. 11.
    Mathur, M., Haller, G., Peacock, T., Ruppert-Felsot, J.E., Swinney, H.L.: Uncovering the Lagrangian skeleton of turbulence. Physical Review Letters 98, 144502 (2007)CrossRefGoogle Scholar
  12. 12.
    Perry, A.E., Chong, M.S.: A description of eddying motions and flow patterns using critical-point concepts. Annual Review of Fluid Mechanics 19, 125–155 (1987)CrossRefGoogle Scholar
  13. 13.
    Helman, J., Hesselink, L.: Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications 11, 36–46 (1991)CrossRefGoogle Scholar
  14. 14.
    Globus, A., Levit, C., Lasinski, T.: A tool for visualizing the topology of three-dimensional vector fields. In: Proc. of IEEE Visualization, pp. 33–41 (1991)Google Scholar
  15. 15.
    Asimov, D.: Notes on the topology of vector fields and flows. Technical Report RNR-93-003, NASA Ames Research Center (1993)Google Scholar
  16. 16.
    Abraham, R.H., Shaw, C.D.: Dynamics, the Geometry of Behavior, 2nd edn. Addison-Wesley (1992)Google Scholar
  17. 17.
    Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Saddle connectors - An approach to visualizing the topological skeleton of complex 3D vector fields. In: Proc. IEEE Visualization, pp. 225–232 (2003)Google Scholar
  18. 18.
    Weinkauf, T., Theisel, H., Hege, H.C., Seidel, H.P.: Boundary switch connectors for topological visualization of complex 3D vector fields. In: Proc. Joint Eurographics - IEEE TCVG Symposium on Visualization (VisSym 2004), pp. 183–192 (2004)Google Scholar
  19. 19.
    Bachthaler, S., Sadlo, F., Weeber, R., Kantorovich, S., Holm, C., Weiskopf, D.: Magnetic Flux Topology of 2D Point Dipoles. Comp. Graph. Forum 31, 955–964 (2012)CrossRefGoogle Scholar
  20. 20.
    Hlawatsch, M., Vollrath, J., Sadlo, F., Weiskopf, D.: Coherent structures of characteristic curves in symmetric second order tensor fields. IEEE Transactions on Visualization and Computer Graphics 17, 781–794 (2011)CrossRefGoogle Scholar
  21. 21.
    Peikert, R., Sadlo, F.: Flow Topology Beyond Skeletons: Visualization of Features in Recirculating Flow. In: Hege, H.C., Polthier, K., Scheuermann, G. (eds.) Topology-Based Methods in Visualization II, pp. 145–160. Springer (2009)Google Scholar
  22. 22.
    Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Stream line and path line oriented topology for 2D time–dependent vector fields. In: Proc. IEEE Visualization, pp. 321–328 (2004)Google Scholar
  23. 23.
    Shi, K., Theisel, H., Weinkauf, T., Hauser, H., Hege, H.C., Seidel, H.P.: Path line oriented topology for periodic 2D time–dependent vector fields. In: Proc. Eurographics / IEEE VGTC Symposium on Visualization, pp. 139–146 (2006)Google Scholar
  24. 24.
    Kasten, J., Hotz, I., Noack, B., Hege, H.C.: On the extraction of long-living features in unsteady fluid flows. In: Topological Methods in Data Analysis and Visualization, Theory, Algorithms, and Applications, pp. 115–126. Springer (2010)Google Scholar
  25. 25.
    Fuchs, R., Kemmler, J., Schindler, B., Sadlo, F., Hauser, H., Peikert, R.: Toward a Lagrangian vector field topology. Comp. Graph. Forum 29, 1163–1172 (2010)CrossRefGoogle Scholar
  26. 26.
    Weinkauf, T., Theisel, H., Hege, H.C., Seidel, H.P.: Topological construction and visualization of higher order 3D vector fields. Comp. Graph. Forum, 469–478 (2004)Google Scholar
  27. 27.
    Weiskopf, D., Ertl, T.: A hybrid physical/device-space approach for spatio-temporally coherent interactive texture advection on curved surfaces. In: Proc. Graphics Interface, pp. 263–270 (2004)Google Scholar
  28. 28.
    Shadden, S., Lekien, F., Marsden, J.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D Nonlinear Phenomena 212, 271–304 (2005)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Laramee, R.S., Jobard, B., Hauser, H.: Image space based visualization of unsteady flow on surfaces. In: Proc. IEEE Visualization, pp. 131–138 (2003)Google Scholar
  30. 30.
    van Wijk, J.J.: Image based flow visualization for curved surfaces. In: Proc. IEEE Visualization, pp. 123–130 (2003)Google Scholar
  31. 31.
    Laramee, R.S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F.H., Weiskopf, D.: The state of the art in flow visualization: Dense and texture–based techniques. Comp. Graph. Forum 23, 203–221 (2004)CrossRefGoogle Scholar
  32. 32.
    Eberly, D.: Ridges in Image and Data Analysis. Computational Imaging and Vision. Kluwer Academic Publishers (1996)Google Scholar
  33. 33.
    Sadlo, F., Peikert, R.: Visualizing Lagrangian coherent structures and comparison to vector field topology. In: Topology-Based Methods in Visualization II, pp. 15–30 (2009)Google Scholar
  34. 34.
    Sadlo, F., Peikert, R.: Efficient visualization of Lagrangian coherent structures by filtered AMR ridge extraction. IEEE Transactions on Visualization and Computer Graphics 13, 1456–1463 (2007)CrossRefGoogle Scholar
  35. 35.
    Garth, C., Gerhardt, F., Tricoche, X., Hagen, H.: Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Transactions on Visualization and Computer Graphics 13, 1464–1471 (2007)CrossRefGoogle Scholar
  36. 36.
    Hlawatsch, M., Sadlo, F., Weiskopf, D.: Hierarchical line integration. IEEE Transactions on Visualization and Computer Graphics 17, 1148–1163 (2011)CrossRefGoogle Scholar
  37. 37.
    Bonjean, F., Lagerloef, G.: Diagnostic model and analysis of the surface currents in the tropical pacific ocean. Journal of Physical Oceanography 32, 2938–2954 (2002)CrossRefGoogle Scholar
  38. 38.
    Bachthaler, S., Sadlo, F., Dachsbacher, C., Weiskopf, D.: Space-Time Visualization of Dynamics in Lagrangian Coherent Structures of Time-Dependent 2D Vector Fields. In: Proc. International Conference on Information Visualization Theory and Applications, pp. 573–583 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Filip Sadlo
    • 1
  • Sven Bachthaler
    • 1
  • Carsten Dachsbacher
    • 2
  • Daniel Weiskopf
    • 1
  1. 1.University of StuttgartGermany
  2. 2.Karlsruhe Institute of TechnologyGermany

Personalised recommendations