Group Nearest Neighbor Queries in the L1 Plane

  • Hee-Kap Ahn
  • Sang Won Bae
  • Wanbin Son
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7876)


Let P be a set of n points in the plane. The k-nearest neighbor (k-NN) query problem is to preprocess P into a data structure that quickly reports k closest points in P for a query point q. This paper addresses a generalization of the k-NN query problem to a query set Q of points, namely, the group nearest neighbor problem, in the L 1 plane. More precisely, a query is assigned with a set Q of at most m points and a positive integer k with k ≤ n, and the distance between a point p and a query set Q is determined as the sum of L 1 distances from p to all q ∈ Q. The maximum number m of query points Q is assumed to be known in advance and to be at most n; that is, m ≤ n. In this paper, we propose two methods, one based on the range tree and the other based on the segment dragging query, obtaining the following complexity bounds: (1) a group k-NN query can be handled in O(m 2logn + k(loglogn + logm)) time after preprocessing P in O(m 2 n log2 n) time and space, or (2) a query can be handled in O(m 2logn + (k + m)log2 n) time after preprocessing P in O(m 2 nlogn) time using O(m 2 n) space. We also show that our approach can be applied to the group k-farthest neighbor query problem.


Query Point Query Time Point Event Neighbor Query Neighbor Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Efrat, A., Sankararaman, S., Zhang, W.: Nearest-neighbor searching under uncertainty. In: Proceedings of the 31st Symposium on Principles of Database Systems, PODS 2012, pp. 225–236. ACM, New York (2012)CrossRefGoogle Scholar
  2. 2.
    Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–923 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bae, S.W., Korman, M., Tokuyama, T.: All farthest neighbors in the presence of highways and obstacles. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 71–82. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Bent, S.W., John, J.W.: Finding the median requires 2n comparisons. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC 1985, pp. 213–216. ACM, New York (1985)CrossRefGoogle Scholar
  5. 5.
    Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 97–104. ACM, New York (2006)Google Scholar
  6. 6.
    Chazelle, B.: An algorithm for segment-dragging and its implementation. Algorithmica 3(1), 205–221 (1988)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cheong, O., Shin, C.-S., Vigneron, A.: Computing farthest neighbors on a convex polytope. Theoretical Computer Science 296(1), 47–58 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer (2008)Google Scholar
  9. 9.
    Durier, R., Michelot, C.: Geometrical properties of the fermat-weber problem. European Journal of Operational Research 20(3), 332–343 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gao, Y., Shou, L., Chen, K., Chen, G.: Aggregate farthest-neighbor queries over spatial data. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II. LNCS, vol. 6588, pp. 149–163. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the Thirteeth Annual ACM Symposium on Theory of Computing, STOC 1998, pp. 604–613. ACM, New York (1998)CrossRefGoogle Scholar
  12. 12.
    Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C., Zhang, R.: idistance: An adaptive b+-tree based indexing method for nearest neighbor search. ACM Trans. Database Syst. 30(2), 364–397 (2005)CrossRefGoogle Scholar
  13. 13.
    Katoh, N., Iwano, K.: Finding k farthest pairs and k closest/farthest bichromatic pairs for points in the plane. International Journal of Computational Geometry and Applications 05(01n02), 37–51 (1995)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, Y., Li, F., Yi, K., Yao, B., Wang, M.: Flexible aggregate similarity search. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, pp. 1009–1020. ACM, New York (2011)CrossRefGoogle Scholar
  15. 15.
    Mitchell, J.: L 1 shortest paths among polygonal obstacles in the plane. Algorithmica 8(1), 55–88 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nie, J., Parrilo, P., Sturmfels, B.: Semidefinite representation of the k-ellipse. In: Algorithms in Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, vol. 146, pp. 117–132. Springer, New York (2008)CrossRefGoogle Scholar
  17. 17.
    Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: Proceedings of the 20th International Conference on Data Engineering, March-April 2, pp. 301–312 (2004)Google Scholar
  18. 18.
    Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial databases. ACM Trans. Database Syst. 30(2), 529–576 (2005)CrossRefGoogle Scholar
  19. 19.
    Rahul, S., Gupta, P., Janardan, R., Rajan, K.S.: Efficient top-k queries for orthogonal ranges. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 110–121. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press (1996)Google Scholar
  21. 21.
    Sproull, R.: Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica 6, 579–589 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, H., Zhang, W.: The L1 Nearest Neighbor Searching with Uncertain Queries. ArXiv e-prints (November 2012)Google Scholar
  23. 23.
    Witzgall, C.: Optimal location of a central facility: mathematical models and concepts. National Bureau of Standards (1964)Google Scholar
  24. 24.
    Yiu, M., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road networks. IEEE Transactions on Knowledge and Data Engineering 17(6), 820–833 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hee-Kap Ahn
    • 1
  • Sang Won Bae
    • 2
  • Wanbin Son
    • 1
  1. 1.Department of Computer Science and EngineeringPOSTECHPohangRepublic of Korea
  2. 2.Department of Computer ScienceKyonggi UniversitySuwonRepublic of Korea

Personalised recommendations